564 research outputs found

    Dynamic scheduling of manufacturing systems with setups and random disruptions

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 249-256).Manufacturing systems are often composed of machines that can produce a variety of items but that most undergo time-consuming (and possibly costly) setups when switching between product types. Scheduling these setups efficiently can have important economic effects on the performance of the plant and involves a tradeoff between throughput, inventory, and operating costs. In addition, the schedule must be robust to random disruptions such as failures or raw material shortages, which are common in production environments. In this thesis, we study policies that address the setup scheduling problem dynamically, in response to current conditions in the system. A new heuristic, called the Hedging Zone Policy (HZP), is introduced and developed. It is a dynamic-sequence policy that always produces the current part type at its maximum production rate until a fixed base stock level is reached. Then, before switching setups, the policy might produce the current part type at its demand rate for some additional time. When selecting changeovers, the HZP implements two types of decision rules. If the difference between base stock and surplus level is small for all part types, the item with the largest weighted difference is selected. Otherwise, the policy uses a fixed priority ranking to select between items that are far from their base stock value. In order to demonstrate the benefits of our policy, we also adapt and implement several other heuristics that have been proposed in the literature for related models. The policies are first analyzed in a purely deterministic setting. The stability of the HZP is addressed and it is shown that a poor selection of its parameters leads to a condition in which some low-priority parts are ignored, resulting in an unstable system. Using Lyapunov's direct method, we obtain an easy-to-evaluate and not-too-conservative condition that ensures production of all part types with bounded surplus. We then compare, through a series of extensive numerical experiments with three-part-type systems, the deterministic performance of the policies in both make-to-order and make-to-stock settings. We show that the HZP outperforms other policies within its class in both cases, a fact that is mainly attributed to its priority-based decisions. When compared to the approximate optimal cost of the problem, our policy performs very well in the make-to-order case, while the simplicity of its base stock structure makes it less competitive in the deterministic make-to-stock problem. The results are then leveraged for the study of a stochastic model, where we consider the effect of random disruptions in the form of machine failures. We prove that our model converges to a fluid limit under an appropriate scaling. This fact allows us to employ our deterministic stability conditions to verify the stochastic (rate) stability of the failure-prone system. We also extend our previous numerical experiments by characterizing the performance of the policies in the stochastic setting. The results show that the HZP still outperforms other policies in the same class. Furthermore, we find that except for cases where failures occur much less or much more frequently than changeovers, the HZP outperforms a fixed-sequence policy that is designed to track a pre-determined, near-optimal deterministic schedule.by Fernando Tubilla.Ph.D

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Queuing Networks in Healthcare Systems

    Get PDF

    DEVELOPMENT OF A SIMPLIFIED, MASS PRODUCIBLE HYBRIDIZED AMBIENT, LOW FREQUENCY, LOW INTENSITY VIBRATION ENERGY SCAVENGER (HALF-LIVES)

    Get PDF
    Scavenging energy from environmental sources is an active area of research to enable remote sensing and microsystems applications. Furthermore, as energy demands soar, there is a significant need to explore new sources and curb waste. Vibration energy scavenging is one environmental source for remote applications and a candidate for recouping energy wasted by mechanical sources that can be harnessed to monitor and optimize operation of critical infrastructure (e.g. Smart Grid). Current vibration scavengers are limited by volume and ancillary requirements for operation such as control circuitry overhead and battery sources. This dissertation, for the first time, reports a mass producible hybrid energy scavenger system that employs both piezoelectric and electrostatic transduction on a common MEMS device. The piezoelectric component provides an inherent feedback signal and pre-charge source that enables electrostatic scavenging operation while the electrostatic device provides the proof mass that enables low frequency operation. The piezoelectric beam forms the spring of the resonant mass-spring transducer for converting vibration excitation into an AC electrical output. A serially poled, composite shim, piezoelectric bimorph produces the highest output rectified voltage of over 3.3V and power output of 145uW using ÂĽ g vibration acceleration at 120Hz. Considering solely the volume of the piezoelectric beam and tungsten proof mass, the volume is 0.054cm3, resulting in a power density of 2.68mW/cm3. Incorporation of a simple parallel plate structure that provides the proof mass for low frequency resonant operation in addition to cogeneration via electrostatic energy scavenging provides a 19.82 to 35.29 percent increase in voltage beyond the piezoelectric generated DC rails. This corresponds to approximately 2.1nW additional power from the electrostatic scavenger component and demonstrates the first instance of hybrid energy scavenging using both piezoelectric and synchronous electrostatic transduction. Furthermore, it provides a complete system architecture and development platform for additional enhancements that will enable in excess of 100uW additional power from the electrostatic scavenger

    Governing Environmental and Economic Flows in Regional Food Systems

    Get PDF
    Globalization, specialization, and intensification have transformed the global food system, generating material flows and impacts that span multiple scales and levels, presenting novel governance challenges. Many argue for a transition toward a sustainable food system, although the scope and specific goals are fiercely contested. Theory and method is needed to evaluate competing normative claims and build legitimacy. In this dissertation Vermont serves as a case study to investigate how environmental and economic flows impact regional governance, focusing on efforts to manage agricultural phosphorus to achieve water quality goals. A material flow account is developed to estimate phosphorus flows embedded in commodities flowing in and out of Vermont’s agricultural system from 1925-2012. The results indicate a net imbalance of phosphorus flows for the entire period, leading to the accumulation of legacy phosphorus in soils that constitutes a long-term threat to water quality. Agricultural intensification and land cover change during this period led to increased phosphorus use efficiency, livestock density, and dependency on imported feed, the largest source of phosphorus entering Vermont since the 1980s. The evidence of persistent imbalance calls into question the effectiveness of current nonpoint source pollution policy. A critical investigation of nutrient management planning policy reveals several shortcomings: pasture is frequently excluded; many phosphorus flows that cross the farm-gate are not captured; critical information on soil phosphorus levels and runoff risk is not collected in a manner that facilitates regional governance. The integration of nutrient management plans and mass-balances is proposed as an alternative approach that can increase accountability, encourage efficiency, and facilitate management and governance, albeit within constraints imposed by Vermont’s position in a globalized market for agricultural commodities. The empirical and policy analysis is complemented by a theoretical investigation that starts from the observation that a sustainability transition inevitably entails tradeoffs amongst competing normative goals. Navigating these tradeoffs is complicated by mismatch between the reach of governance institutions and the spatial and temporal dimensions of the challenges they face. This investigation contributes to understanding how legitimacy and consensus are constructed in the context of competing normative claims and multi-level governance. It considers deliberative democracy as a means for evaluating normative claims and arriving at a shared, legitimate basis for social action. An instrumental perspective on deliberation is contrasted with a deeper notion that sees deliberation as constitutive of sustainability at a local-to-global level. A conclusion grounds this analysis by drawing out the ways in which deliberation can inform Vermont’s efforts to govern its agriculture, water quality, and economic development, sowing the seeds for a sustainability transition

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin
    • …
    corecore