1,805 research outputs found

    IST Austria Technical Report

    Get PDF
    We study finite-state two-player (zero-sum) concurrent mean-payoff games played on a graph. We focus on the important sub-class of ergodic games where all states are visited infinitely often with probability 1. The algorithmic study of ergodic games was initiated in a seminal work of Hoffman and Karp in 1966, but all basic complexity questions have remained unresolved. Our main results for ergodic games are as follows: We establish (1) an optimal exponential bound on the patience of stationary strategies (where patience of a distribution is the inverse of the smallest positive probability and represents a complexity measure of a stationary strategy); (2) the approximation problem lie in FNP; (3) the approximation problem is at least as hard as the decision problem for simple stochastic games (for which NP and coNP is the long-standing best known bound). We show that the exact value can be expressed in the existential theory of the reals, and also establish square-root sum hardness for a related class of games

    A Potential Reduction Algorithm for Two-person Zero-sum Mean Payoff Stochastic Games

    Get PDF
    We suggest a new algorithm for two-person zero-sum undiscounted stochastic games focusing on stationary strategies. Given a positive real ϵ\epsilon, let us call a stochastic game ϵ\epsilon-ergodic, if its values from any two initial positions differ by at most ϵ\epsilon. The proposed new algorithm outputs for every ϵ>0\epsilon>0 in finite time either a pair of stationary strategies for the two players guaranteeing that the values from any initial positions are within an ϵ\epsilon-range, or identifies two initial positions uu and vv and corresponding stationary strategies for the players proving that the game values starting from uu and vv are at least ϵ/24\epsilon/24 apart. In particular, the above result shows that if a stochastic game is ϵ\epsilon-ergodic, then there are stationary strategies for the players proving 24ϵ24\epsilon-ergodicity. This result strengthens and provides a constructive version of an existential result by Vrieze (1980) claiming that if a stochastic game is 00-ergodic, then there are ϵ\epsilon-optimal stationary strategies for every ϵ>0\epsilon > 0. The suggested algorithm is based on a potential transformation technique that changes the range of local values at all positions without changing the normal form of the game

    Nash equilibria for non zero-sum ergodic stochastic differential games

    Full text link
    In this paper we consider non zero-sum games where multiple players control the drift of a process, and their payoffs depend on its ergodic behaviour. We establish their connection with systems of Ergodic BSDEs, and prove the existence of a Nash equilibrium under the generalised Isaac's conditions. We also study the case of interacting players of different type
    corecore