75,778 research outputs found

    Progressive Participation

    Get PDF
    A single seller faces a sequence of buyers with unit demand. The buyers are forward-looking and long-lived. The arrival time and the valuation is private information of each buyer. Any incentive compatible mechanism has to induce truth-telling about the arrival time and the evolution of the valuation. We derive the optimal stationary mechanism in closed form and characterize its qualitative structure. As the arrival time is private information, the buyer can choose the time at which he reports his arrival. The truth-telling constraint regarding the arrival time can be represented as an optimal stopping problem. The stopping time determines the time at which the buyer decides to participate in the mechanism. The resulting value function of each buyer cannot be too convex and must be continuously differentiable everywhere, reflecting the option value of delaying participation. The optimal mechanism thus induces progressive participation by each buyer: he participates either immediately or at a future random time

    Progressive Participation

    Get PDF
    A single seller faces a sequence of buyers with unit demand. The buyers are forward-looking and long-lived but vanish (and are replaced) at a constant rate. The arrival time and the valuation is private information of each buyer and unobservable to the seller. Any incentive compatible mechanism has to induce truth-telling about the arrival time and the evolution of the valuation. We derive the optimal stationary mechanism, characterize its qualitative structure, and derive a closed-form solution. As the arrival time is private information, the buyer can choose the time at which he reports his arrival. The truth-telling constraint regarding the arrival time can be represented as an optimal stopping problem. The stopping time determines the time at which the buyer decides to participate in the mechanism. The resulting value function of each buyer cannot be too convex and must be continuously differentiable everywhere, reflecting the option value of delaying participation. The optimal mechanism thus induces progressive participation by each buyer: he participates either immediately or at a future random time

    Progressive Participation

    Get PDF
    A single seller faces a sequence of buyers with unit demand. The buyers are forward-looking and long-lived but vanish (and are replaced) at a constant rate. The arrival time and the valuation is private information of each buyer and unobservable to the seller. Any incentive-compatible mechanism has to induce truth-telling about the arrival time and the evolution of the valuation. We derive the optimal stationary mechanism, characterize its qualitative structure and derive a closed-form solution. As the arrival time is private information, the agent can choose the time at which he reports his arrival. The truth-telling constraint regarding the arrival time can be represented as an optimal stopping problem. The stopping time determines the time at which the agent decides to participate in the mechanism. The resulting value function of each agent can not be too convex and has to be continuously differentiable everywhere, reflecting the option value of delaying participation. The optimal mechanism thus induces progressive participation by each agent: he participates either immediately or at a future random time

    Progressive Participation

    Get PDF
    A single seller faces a sequence of buyers with unit demand. The buyers are forwardlooking and long-lived but vanish (and are replaced) at a constant rate. The arrival time and the valuation is private information of each buyer and unobservable to the seller. Any incentive compatible mechanism has to induce truth-telling about the arrival time and the evolution of the valuation. We derive the optimal stationary mechanism in closed form and characterize its qualitative structure. As the arrival time is private information, the buyer can choose the time at which he reports his arrival. The truth-telling constraint regarding the arrival time can be represented as an optimal stopping problem. The stopping time determines the time at which the buyer decides to participate in the mechanism. The resulting value function of each buyer cannot be too convex and must be continuously differentiable everywhere, reflecting the option value of delaying participation. The optimal mechanism thus induces progressive participation by each buyer: he participates either immediately or at a future random time

    Value and Nash Equilibrium in Games of Optimal Stopping

    Get PDF
    We study games of optimal stopping (Dynkin games). A Dynkin game is a mathematical model involving several competing players, each of them interested in capturing the moments when certain stochastic processes are at an extremum. Actions of players are referred to as “stopping” (of an underlying process), and the outcome for every player depends on the stopping decisions of the other players. Our focus is on Dynkin games with asymmetric information. Asymmetry of information refers to the situation in which different players have different (possibly incomplete) knowledge of the underlying world. Observations of the underlying processes (or of a more general information flow) and of the actions of competitors allow the players to make optimal stopping choices. An important aspect of our framework is a possibility of randomising these choices: for example, in order to avoid revealing private information to competitors. We develop a general stochastic framework for studying Dynkin games with asymmetric information. In particular, we provide conditions for the existence of the value in such games. Separately, we study issues arising in games with mixed first-mover advantage, in which sometimes it is beneficial for the players to act as soon as possible, and sometimes to wait for another player to act

    What Do Our Choices Say About Our Preferences?

    Full text link
    Taking online decisions is a part of everyday life. Think of buying a house, parking a car or taking part in an auction. We often take those decisions publicly, which may breach our privacy - a party observing our choices may learn a lot about our preferences. In this paper we investigate the online stopping algorithms from the privacy preserving perspective, using a mathematically rigorous differential privacy notion. In differentially private algorithms there is usually an issue of balancing the privacy and utility. In this regime, in most cases, having both optimality and high level of privacy at the same time is impossible. We propose a natural mechanism to achieve a controllable trade-off, quantified by a parameter, between the accuracy of the online algorithm and its privacy. Depending on the parameter, our mechanism can be optimal with weaker differential privacy or suboptimal, yet more privacy-preserving. We conduct a detailed accuracy and privacy analysis of our mechanism applied to the optimal algorithm for the classical secretary problem. Thereby the classical notions from two distinct areas - optimal stopping and differential privacy - meet for the first time.Comment: 22 pages, 6 figure

    Mediation design

    Get PDF
    • …
    corecore