126 research outputs found

    WCET-Aware Scratchpad Memory Management for Hard Real-Time Systems

    Get PDF
    abstract: Cyber-physical systems and hard real-time systems have strict timing constraints that specify deadlines until which tasks must finish their execution. Missing a deadline can cause unexpected outcome or endanger human lives in safety-critical applications, such as automotive or aeronautical systems. It is, therefore, of utmost importance to obtain and optimize a safe upper bound of each task’s execution time or the worst-case execution time (WCET), to guarantee the absence of any missed deadline. Unfortunately, conventional microarchitectural components, such as caches and branch predictors, are only optimized for average-case performance and often make WCET analysis complicated and pessimistic. Caches especially have a large impact on the worst-case performance due to expensive off- chip memory accesses involved in cache miss handling. In this regard, software-controlled scratchpad memories (SPMs) have become a promising alternative to caches. An SPM is a raw SRAM, controlled only by executing data movement instructions explicitly at runtime, and such explicit control facilitates static analyses to obtain safe and tight upper bounds of WCETs. SPM management techniques, used in compilers targeting an SPM-based processor, determine how to use a given SPM space by deciding where to insert data movement instructions and what operations to perform at those program locations. This dissertation presents several management techniques for program code and stack data, which aim to optimize the WCETs of a given program. The proposed code management techniques include optimal allocation algorithms and a polynomial-time heuristic for allocating functions to the SPM space, with or without the use of abstraction of SPM regions, and a heuristic for splitting functions into smaller partitions. The proposed stack data management technique, on the other hand, finds an optimal set of program locations to evict and restore stack frames to avoid stack overflows, when the call stack resides in a size-limited SPM. In the evaluation, the WCETs of various benchmarks including real-world automotive applications are statically calculated for SPMs and caches in several different memory configurations.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Towards Multi-Objective Dynamic SPM Allocation

    Get PDF

    Volatile STT-RAM Scratchpad Design and Data Allocation for Low Energy

    Get PDF
    [Abstract] On-chip power consumption is one of the fundamental challenges of current technology scaling. Cache memories consume a sizable part of this power, particularly due to leakage energy. STT-RAM is one of several new memory technologies that have been proposed in order to improve power while preserving performance. It features high density and low leakage, but at the expense of write energy and performance. This article explores the use of STT-RAM--based scratchpad memories that trade nonvolatility in exchange for faster and less energetically expensive accesses, making them feasible for on-chip implementation in embedded systems. A novel multiretention scratchpad partitioning is proposed, featuring multiple storage spaces with different retention, energy, and performance characteristics. A customized compiler-based allocation algorithm suitable for use with such a scratchpad organization is described. Our experiments indicate that a multiretention STT-RAM scratchpad can provide energy savings of 53% with respect to an iso-area, hardware-managed SRAM cache

    Cache-Aware Instruction SPM Allocation for Hard Real-Time Systems

    Get PDF
    To improve the execution time of a program, parts of its instructions can be allocated to a fast Scratchpad Memory (SPM) at compile time. This is a well-known technique which can be used to minimize the program's worst-case Execution Time (WCET). However, modern embedded systems often use cached main memories. An SPM allocation will inevitably lead to changes in the program's memory layout in main memory, resulting in either improved or degraded worst-case caching behavior. We tackle this issue by proposing a cache-aware SPM allocation algorithm based on integer-linear programming which accounts for changes in the worst-case cache miss behavior

    Towards a Time-predictable Dual-Issue Microprocessor: The Patmos Approach

    Get PDF
    Current processors are optimized for average case performance, often leading to a high worst-case execution time (WCET). Many architectural features that increase the average case performance are hard to be modeled for the WCET analysis. In this paper we present Patmos, a processor optimized for low WCET bounds rather than high average case performance. Patmos is a dual-issue, statically scheduled RISC processor. The instruction cache is organized as a method cache and the data cache is organized as a split cache in order to simplify the cache WCET analysis. To fill the dual-issue pipeline with enough useful instructions, Patmos relies on a customized compiler. The compiler also plays a central role in optimizing the application for the WCET instead of average case performance

    Fast, predictable and low energy memory references through architecture-aware compilation

    Get PDF
    The design of future high-performance embedded systems is hampered by two problems: First, the required hardware needs more energy than is available from batteries. Second, current cache-based approaches for bridging the increasing speed gap between processors and memories cannot guarantee predictable real-time behavior. A contribution to solving both problems is made in this paper which describes a comprehensive set of algorithms that can be applied at design time in order to maximally exploit scratch pad memories (SPMs). We show that both the energy consumption as well as the computed worst case execution time (WCET) can be reduced by up to to 80% and 48%, respectively, by establishing a strong link between the memory architecture and the compiler

    Is Time Predictability Quantifiable?

    Get PDF
    Abstract—Computer architects and researchers in the realtime domain start to investigate processors and architectures optimized for real-time systems. Optimized for real-time systems means time predictable, i.e., architectures where it is possible to statically derive a tight bound of the worst-case execution time. To compare different approaches we would like to quantify time predictability. That means we need to measure time predictability. In this paper we discuss the different approaches for these measurements and conclude that time predictability is practically not quantifiable. We can only compare the worst-case execution time bounds of different architectures. I

    Static Allocation of Basic Blocks Based on Runtime and Memory Requirements in Embedded Real-Time Systems with Hierarchical Memory Layout

    Get PDF

    A Survey on Cache Management Mechanisms for Real-Time Embedded Systems

    Get PDF
    © ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, {48, 2, (November 2015)} http://doi.acm.org/10.1145/2830555Multicore processors are being extensively used by real-time systems, mainly because of their demand for increased computing power. However, multicore processors have shared resources that affect the predictability of real-time systems, which is the key to correctly estimate the worst-case execution time of tasks. One of the main factors for unpredictability in a multicore processor is the cache memory hierarchy. Recently, many research works have proposed different techniques to deal with caches in multicore processors in the context of real-time systems. Nevertheless, a review and categorization of these techniques is still an open topic and would be very useful for the real-time community. In this article, we present a survey of cache management techniques for real-time embedded systems, from the first studies of the field in 1990 up to the latest research published in 2014. We categorize the main research works and provide a detailed comparison in terms of similarities and differences. We also identify key challenges and discuss future research directions.King Saud University NSER
    • …
    corecore