31 research outputs found

    Soft margin estimation for automatic speech recognition

    Get PDF
    In this study, a new discriminative learning framework, called soft margin estimation (SME), is proposed for estimating the parameters of continuous density hidden Markov models (HMMs). The proposed method makes direct use of the successful ideas of margin in support vector machines to improve generalization capability and decision feedback learning in discriminative training to enhance model separation in classifier design. SME directly maximizes the separation of competing models to enhance the testing samples to approach a correct decision if the deviation from training samples is within a safe margin. Frame and utterance selections are integrated into a unified framework to select the training utterances and frames critical for discriminating competing models. SME offers a flexible and rigorous framework to facilitate the incorporation of new margin-based optimization criteria into HMMs training. The choice of various loss functions is illustrated and different kinds of separation measures are defined under a unified SME framework. SME is also shown to be able to jointly optimize feature extraction and HMMs. Both the generalized probabilistic descent algorithm and the Extended Baum-Welch algorithm are applied to solve SME. SME has demonstrated its great advantage over other discriminative training methods in several speech recognition tasks. Tested on the TIDIGITS digit recognition task, the proposed SME approach achieves a string accuracy of 99.61%, the best result ever reported in literature. On the 5k-word Wall Street Journal task, SME reduced the word error rate (WER) from 5.06% of MLE models to 3.81%, with relative 25% WER reduction. This is the first attempt to show the effectiveness of margin-based acoustic modeling for large vocabulary continuous speech recognition in a HMMs framework. The generalization of SME was also well demonstrated on the Aurora 2 robust speech recognition task, with around 30% relative WER reduction from the clean-trained baseline.Ph.D.Committee Chair: Dr. Chin-Hui Lee; Committee Member: Dr. Anthony Joseph Yezzi; Committee Member: Dr. Biing-Hwang (Fred) Juang; Committee Member: Dr. Mark Clements; Committee Member: Dr. Ming Yua

    Modularity and Neural Integration in Large-Vocabulary Continuous Speech Recognition

    Get PDF
    This Thesis tackles the problems of modularity in Large-Vocabulary Continuous Speech Recognition with use of Neural Network

    Automatic speech recognition: from study to practice

    Get PDF
    Today, automatic speech recognition (ASR) is widely used for different purposes such as robotics, multimedia, medical and industrial application. Although many researches have been performed in this field in the past decades, there is still a lot of room to work. In order to start working in this area, complete knowledge of ASR systems as well as their weak points and problems is inevitable. Besides that, practical experience improves the theoretical knowledge understanding in a reliable way. Regarding to these facts, in this master thesis, we have first reviewed the principal structure of the standard HMM-based ASR systems from technical point of view. This includes, feature extraction, acoustic modeling, language modeling and decoding. Then, the most significant challenging points in ASR systems is discussed. These challenging points address different internal components characteristics or external agents which affect the ASR systems performance. Furthermore, we have implemented a Spanish language recognizer using HTK toolkit. Finally, two open research lines according to the studies of different sources in the field of ASR has been suggested for future work

    Articulatory features for conversational speech recognition

    Get PDF

    Effects of Transcription Errors on Supervised Learning in Speech Recognition

    Get PDF
    Supervised learning using Hidden Markov Models has been used to train acoustic models for automatic speech recognition for several years. Typically clean transcriptions form the basis for this training regimen. However, results have shown that using sources of readily available transcriptions, which can be erroneous at times (e.g., closed captions) do not degrade the performance significantly. This work analyzes the effects of mislabeled data on recognition accuracy. For this purpose, the training is performed using manually corrupted training data and the results are observed on three different databases: TIDigits, Alphadigits and SwitchBoard. For Alphadigits, with 16% of data mislabeled, the performance of the system degrades by 12% relative to the baseline results. For a complex task like SWITCHBOARD, at 16% mislabeled training data, the performance of the system degrades by 8.5% relative to the baseline results. The training process is more robust to mislabeled data because the Gaussian mixtures that are used to model the underlying distribution tend to cluster around the majority of the correct data. The outliers (incorrect data) do not contribute significantly to the reestimation process

    A System for Simultaneous Translation of Lectures and Speeches

    Get PDF
    This thesis realizes the first existing automatic system for simultaneous speech-to-speech translation. The focus of this system is the automatic translation of (technical oriented) lectures and speeches from English to Spanish, but the different aspects described in this thesis will also be helpful for developing simultaneous translation systems for other domains or languages

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Context-Dependent Acoustic Modelling for Speech Recognition

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore