767 research outputs found

    Spatial optimization for land use allocation: accounting for sustainability concerns

    Get PDF
    Land-use allocation has long been an important area of research in regional science. Land-use patterns are fundamental to the functions of the biosphere, creating interactions that have substantial impacts on the environment. The spatial arrangement of land uses therefore has implications for activity and travel within a region. Balancing development, economic growth, social interaction, and the protection of the natural environment is at the heart of long-term sustainability. Since land-use patterns are spatially explicit in nature, planning and management necessarily must integrate geographical information system and spatial optimization in meaningful ways if efficiency goals and objectives are to be achieved. This article reviews spatial optimization approaches that have been relied upon to support land-use planning. Characteristics of sustainable land use, particularly compactness, contiguity, and compatibility, are discussed and how spatial optimization techniques have addressed these characteristics are detailed. In particular, objectives and constraints in spatial optimization approaches are examined

    Methodological review of multicriteria optimization techniques: aplications in water resources

    Get PDF
    Multi-criteria decision analysis (MCDA) is an umbrella approach that has been applied to a wide range of natural resource management situations. This report has two purposes. First, it aims to provide an overview of advancedmulticriteriaapproaches, methods and tools. The review seeks to layout the nature of the models, their inherent strengths and limitations. Analysis of their applicability in supporting real-life decision-making processes is provided with relation to requirements imposed by organizationally decentralized and economically specific spatial and temporal frameworks. Models are categorized based on different classification schemes and are reviewed by describing their general characteristics, approaches, and fundamental properties. A necessity of careful structuring of decision problems is discussed regarding planning, staging and control aspects within broader agricultural context, and in water management in particular. A special emphasis is given to the importance of manipulating decision elements by means ofhierarchingand clustering. The review goes beyond traditionalMCDAtechniques; it describes new modelling approaches. The second purpose is to describe newMCDAparadigms aimed at addressing the inherent complexity of managing water ecosystems, particularly with respect to multiple criteria integrated with biophysical models,multistakeholders, and lack of information. Comments about, and critical analysis of, the limitations of traditional models are made to point out the need for, and propose a call to, a new way of thinking aboutMCDAas they are applied to water and natural resources management planning. These new perspectives do not undermine the value of traditional methods; rather they point to a shift in emphasis from methods for problem solving to methods for problem structuring. Literature review show successfully integrations of watershed management optimization models to efficiently screen a broad range of technical, economic, and policy management options within a watershed system framework and select the optimal combination of management strategies and associated water allocations for designing a sustainable watershed management plan at least cost. Papers show applications in watershed management model that integrates both natural and human elements of a watershed system including the management of ground and surface water sources, water treatment and distribution systems, human demands,wastewatertreatment and collection systems, water reuse facilities,nonpotablewater distribution infrastructure, aquifer storage and recharge facilities, storm water, and land use

    Metaheuristic Algorithms for Spatial Multi-Objective Decision Making

    Get PDF
    Spatial decision making is an everyday activity, common to individuals and organizations. However, recently there is an increasing interest in the importance of spatial decision-making systems, as more decision-makers with concerns about sustainability, social, economic, environmental, land use planning, and transportation issues discover the benefits of geographical information. Many spatial decision problems are regarded as optimization problems, which involve a large set of feasible alternatives, multiple conflicting objectives that are difficult and complex to solve. Hence, Multi-Objective Optimization methods (MOO)โ€”metaheuristic algorithms integrated with Geographical Information Systems (GIS) are appealing to be powerful tools in these regards, yet their implementation in spatial context is still challenging. In this thesis, various metaheuristic algorithms are adopted and improved to solve complex spatial problems. Disaster management and urban planning are used as case studies of this thesis.These case studies are explored in the four papers that are part of this thesis. In paper I, four metaheuristic algorithms have been implemented on the same spatial multi-objective problemโ€”evacuation planning, to investigate their performance and potential. The findings show that all tested algorithms were effective in solving the problem, although in general, some had higher performance, while others showed the potential of being flexible to be modified to fit better to the problem. In the same context, paper II identified the effectiveness of the Multi-objective Artificial Bee Colony (MOABC) algorithm when improved to solve the evacuation problem. In paper III, we proposed a multi-objective optimization approach for urban evacuation planning that considered three spatial objectives which were optimized using an improved Multi-Objective Cuckoo Search algorithm (MOCS). Both improved algorithms (MOABC and MOCS) proved to be efficient in solving evacuation planning when compared to their standard version and other algorithms. Moreover, Paper IV proposed an urban land-use allocation model that involved three spatial objectives and proposed an improved Non-dominated Sorting Biogeography-based Optimization algorithm (NSBBO) to solve the problem efficiently and effectively.Overall, the work in this thesis demonstrates that different metaheuristic algorithms have the potential to change the way spatial decision problems are structured and can improve the transparency and facilitate decision-makers to map solutions and interactively modify decision preferences through trade-offs between multiple objectives. Moreover, the obtained results can be used in a systematic way to develop policy recommendations. From the perspective of GIS - Multi-Criteria Decision Making (MCDM) research, the thesis contributes to spatial optimization modelling and extended knowledge on the application of metaheuristic algorithms. The insights from this thesis could also benefit the development and practical implementation of other Artificial Intelligence (AI) techniques to enhance the capabilities of GIS for tackling complex spatial multi-objective decision problems in the future

    Multi-Objective Spatial Optimization: Sustainable Land Use Allocation at Sub-Regional Scale

    Get PDF
    The rational use of territorial resources is a key factor in achieving sustainability. Spatial planning is an important tool that helps decision makers to achieve sustainability in the long term. This work proposes a multi-objective model for sustainable land use allocation known as MAUSS (Spanish acronym for โ€œModelo de Asignaciรณn de Uso Sostenible de Sueloโ€) The model was applied to the Plains of San Juan, Puebla, Mexico, which is currently undergoing a rapid industrialization process. The main objective of the model is to generate land use allocations that lead to a territorial balance within regions in three main ways by maximizing income, minimizing negative environmental pressure on water and air through specific evaluations of water use and CO2 emissions, and minimizing food deficit. The non-sorting genetic algorithm II (NSGA-II) is the evolutionary optimization algorithm of MAUSS. NSGA-II has been widely modified through a novel and efficient random initializing operator that enables spatial rationale from the initial solutions, a crossover operator designed to streamline the best genetic information transmission as well as diversity, and two geometric operators, geographic dispersion (GDO) and the proportion (PO), which strengthen spatial rationality. MAUSS provided a more sustainable land use allocation compared to the current land use distribution in terms of higher income, 9% lower global negative pressure on the environment and 5.2% lower food deficit simultaneousl

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ๋‹ค์ค‘์Šค์ผ€์ผ/๋‹ค๋ชฉ์  ๊ณต๊ฐ„๊ณ„ํš ์ตœ์ ํ™”๋ชจ๋ธ ๊ตฌ์ถ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™์ „๊ณต, 2019. 2. ์ด๋™๊ทผ.๊ณต๊ฐ„๊ณ„ํš ๊ณผ์ •์—์„œ ๋‹ค์–‘ํ•œ ์ดํ•ด๊ด€๊ณ„์ž์™€ ๊ฒฐ๋ถ€๋œ ๋ชฉํ‘œ์™€ ์ œ์•ฝ ์š”๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๊ฒƒ์€ ๋ณต์žกํ•œ ๋น„์„ ํ˜•์  ๋ฌธ์ œ๋กœ์„œ ํ•ด๊ฒฐํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์— ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (genetic algorithms), ๋‹ด๊ธˆ์งˆ ๊ธฐ๋ฒ• (simulated annealing), ๊ฐœ๋ฏธ ๊ตฐ์ง‘ ์ตœ์ ํ™” (ant colony optimization) ๋“ฑ์˜ ๋‹ค๋ชฉ์  ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์‘์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ด€๋ จ ์—ฐ๊ตฌ ์—ญ์‹œ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋‹ค. ์ด ์ค‘ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ถ€๋ฌธ์— ๊ฐ€์žฅ ๋นˆ๋„ ๋†’๊ฒŒ ์ ์šฉ๋œ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ exploration๊ณผ exploitation์˜ ๊ท ํ˜•์œผ๋กœ ํ•ฉ๋ฆฌ์ ์ธ ์‹œ๊ฐ„ ๋‚ด์— ์ถฉ๋ถ„ํžˆ ์ข‹์€ ๊ณ„ํš์•ˆ์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณต๊ฐ„ ์ตœ์ ํ™” ์—ฐ๊ตฌ๊ฐ€ ๋ณด์—ฌ์ค€ ์ข‹์€ ์„ฑ๊ณผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๊ฐ€ ํŠน์ • ์šฉ๋„ ํ˜น์€ ์‹œ์„ค์˜ ๋ฐฐ์น˜์— ์ง‘์ค‘๋˜์–ด ์žˆ์œผ๋ฉฐ, ๊ธฐํ›„๋ณ€ํ™” ์ ์‘, ์žฌํ•ด ๊ด€๋ฆฌ, ๊ทธ๋ฆฐ์ธํ”„๋ผ ๊ณ„ํš๊ณผ ๊ฐ™์€ ์ตœ๊ทผ์˜ ํ™˜๊ฒฝ ์ด์Šˆ๋ฅผ ๋‹ค๋ฃฌ ์‚ฌ๋ก€๋Š” ๋งค์šฐ ๋ฏธํกํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋น„์ง€๋ฐฐ ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (non-dominated sorting genetic algorithm II)์— ๊ธฐ์ดˆํ•˜์—ฌ ๊ธฐํ›„๋ณ€ํ™” ์ ์‘, ์žฌํ•ด ๊ด€๋ฆฌ, ๋„์‹œ์˜ ๋…น์ง€ ๊ณ„ํš ๋“ฑ๊ณผ ๊ฐ™์€ ํ™˜๊ฒฝ ์ด์Šˆ๋ฅผ ๊ณต๊ฐ„๊ณ„ํš์— ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” ์ผ๋ จ์˜ ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ฐœ๋ณ„ ํ™˜๊ฒฝ ์ด์Šˆ์— ๋”ฐ๋ผ ๊ณต๊ฐ„ ํ•ด์ƒ๋„, ๋ชฉ์ , ์ œ์•ฝ์š”๊ฑด์ด ๋‹ค๋ฅด๊ฒŒ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๊ณต๊ฐ„์  ๋ฒ”์œ„๊ฐ€ ์ข์•„์ง€๊ณ  ๊ณต๊ฐ„ํ•ด์ƒ๋„๋Š” ๋†’์•„์ง€๋Š” ์ˆœ์„œ๋Œ€๋กœ ๋‚˜์—ดํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ์ฒซ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ํ–‰์ •๊ตฌ์—ญ ๋„ ๊ทœ๋ชจ (province scale, ํ•ด์ƒ๋„ 1ใŽข)์—์„œ ๋ฏธ๋ž˜์˜ ๊ธฐํ›„๋ณ€ํ™”์— ์ ์‘ํ•˜๊ธฐ ์œ„ํ•œ ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐํ›„๋ณ€ํ™”๊ฐ€ ๋จผ ๋ฏธ๋ž˜๊ฐ€ ์•„๋‹Œ, ํ˜„์žฌ ์ด๋ฏธ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๊ด€๋ จํ•œ ๋‹ค์ˆ˜์˜ ํ”ผํ•ด๊ฐ€ ๊ด€์ฐฐ๋˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ณต๊ฐ„์  ๊ด€์ ์—์„œ ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ์ ์‘์˜ ํ•„์š”์„ฑ์ด ์ง€์ ๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ตฌ์ฒด์ ์œผ๋กœ ๊ธฐํ›„์— ๋Œ€ํ•œ ํšŒ๋ณต ํƒ„๋ ฅ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ํ† ์ง€์ด์šฉ์˜ ๊ณต๊ฐ„์  ๊ตฌ์„ฑ์„ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”์‹œ์ผœ์•ผ ํ• ์ง€์— ๋Œ€ํ•œ ๋ฐฉ๋ฒ•๋ก  ์ œ์‹œ๋Š” ๋ฏธํกํ•˜๋‹ค. ์ง€์—ญ๊ณ„ํš์—์„œ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ์„ ๊ณ ๋ คํ•œ ํ† ์ง€์ด์šฉ ๋ฐฐ๋ถ„์€ ๋งค์šฐ ์œ ์šฉํ•œ, ๊ธฐ๋ณธ์ ์ธ ์ค‘์žฅ๊ธฐ ์ ์‘ ์ „๋žต์— ํ•ด๋‹นํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค๋ชฉ์  ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (MOGA, multi-objective genetic algorithm)์— ๊ธฐ์ดˆํ•˜์—ฌ 9,982ใŽข์— 350๋งŒ์˜ ์ธ๊ตฌ๊ฐ€ ๊ฑฐ์ฃผํ•˜๋Š” ํ•œ๊ตญ์˜ ์ถฉ์ฒญ๋‚จ๋„ ๋ฐ ๋Œ€์ „๊ด‘์—ญ์‹œ ์ผ๋Œ€๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๊ธฐํ›„๋ณ€ํ™” ์ ์‘์„ ์œ„ํ•œ ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์ง€์—ญ์ ์ธ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ๊ณผ ๊ฒฝ์ œ์  ์—ฌ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ ์žฌํ•ด ํ”ผํ•ด ๋ฐ ์ „ํ™˜๋Ÿ‰์˜ ์ตœ์†Œํ™”, ๋ฒผ ์ƒ์‚ฐ๋Ÿ‰, ์ข… ํ’๋ถ€๋„ ๋ณด์ „, ๊ฒฝ์ œ์  ๊ฐ€์น˜์˜ ์ตœ๋Œ€ํ™” ๋“ฑ ๋‹ค์„ฏ ๊ฐ€์ง€์˜ ๋ชฉ์ ์„ ์„ ํƒํ•˜์˜€๋‹ค. ๊ฐ ๋ชฉ์  ๋ณ„ ๊ฐ€์ค‘์น˜๋ฅผ ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ ์—ฌ์„ฏ ๊ฐ€์ง€ ๊ฐ€์ค‘์น˜ ์กฐํ•ฉ์— ๋Œ€ํ•œ 17๊ฐœ์˜ ํŒŒ๋ ˆํ†  ์ตœ์  ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ์ •๋„์˜ ์ฐจ์ด๋Š” ์žˆ์œผ๋‚˜ ํ˜„์žฌ์˜ ํ† ์ง€์ด์šฉ์— ๋น„ํ•ด ๊ธฐํ›„๋ณ€ํ™” ์ ์‘ ๋ถ€๋ถ„์—์„œ ๋” ์ข‹์€ ํผํฌ๋จผ์Šค๋ฅผ ๋ณด์˜€์œผ๋ฏ€๋กœ, ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ํšŒ๋ณตํƒ„๋ ฅ์„ฑ์ด ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์˜ ์œ ์—ฐํ•œ ๊ตฌ์กฐ๋ฅผ ๊ณ ๋ คํ•˜์˜€์„ ๋•Œ, ์ง€์—ญ์˜ ์‹ค๋ฌด์ž ์—ญ์‹œ ๊ฐ€์ค‘์น˜์™€ ๊ฐ™์€ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ, ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ ํ‰๊ฐ€์™€ ๊ฐ™์€ ์ž…๋ ฅ์ž๋ฃŒ๋ฅผ ๋ณ€๊ฒฝํ•จ์œผ๋กœ์จ ํšจ์œจ์ ์œผ๋กœ ์ƒˆ๋กœ์šด ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ƒ์„ฑ ๋ฐ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ๋‘ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ํ–‰์ •๊ตฌ์—ญ ๊ตฐ ๊ทœ๋ชจ (local scale, ํ•ด์ƒ๋„ 100m)์—์„œ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์žฌํ•ด ํ”ผํ•ด๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‚ฐ์•…์ง€ํ˜•์—์„œ ํญ์šฐ๋กœ ์ธํ•œ ์‚ฐ์‚ฌํƒœ๋Š” ์ธ๋ช…๊ณผ ์žฌ์‚ฐ์— ์‹ฌ๊ฐํ•œ ํ”ผํ•ด๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋”์šฑ์ด ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ฐ•์šฐ์˜ ๋ณ€๋™์„ฑ ์ฆ๊ฐ€๋กœ ์ด๋Ÿฌํ•œ ์‚ฐ์‚ฌํƒœ ๋นˆ๋„ ๋ฐ ๊ฐ•๋„ ์—ญ์‹œ ์ฆ๋Œ€๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฐ์‚ฌํƒœ ๋ฆฌ์Šคํฌ๊ฐ€ ๋†’์€ ์ง€์—ญ์„ ํ”ผํ•ด ๊ฐœ๋ฐœ์ง€์—ญ์„ ๋ฐฐ์น˜ํ•˜๋Š” ๊ฒƒ์ด ํ”ผํ•ด๋ฅผ ์ €๊ฐ ํ˜น์€ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ์ „๋žต์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์œผ๋‚˜, ์‹ค์ œ๊ณต๊ฐ„์—์„œ์˜ ๊ณ„ํš์€ ๋งค์šฐ ๋ณต์žกํ•œ ๋น„์„ ํ˜•์˜ ๋ฌธ์ œ๋กœ์„œ ์ด๊ฒƒ์„ ์‹คํ˜„ํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„์ง€๋ฐฐ ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ II์— ๊ธฐ์ดˆํ•˜์—ฌ ์‚ฐ์‚ฌํƒœ ๋ฆฌ์Šคํฌ ๋ฐ ์ „ํ™˜๋Ÿ‰, ํŒŒํŽธํ™”์˜ ์ตœ์†Œํ™” ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ชฉ์ ์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์ข…ํ•ฉ์ ์ธ ํ† ์ง€์ด์šฉ ๋ฐฐ๋ถ„ ๊ณ„ํš์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋Œ€์ƒ์ง€๋Š” 2018๋…„ ๋™๊ณ„์˜ฌ๋ฆผํ”ฝ ๊ฐœ์ตœ์ง€์ธ ํ•œ๊ตญ์˜ ํ‰์ฐฝ๊ตฐ์œผ๋กœ์„œ 2006๋…„์— ์‚ฐ์‚ฌํƒœ๋กœ ์ธํ•œ ๋Œ€๊ทœ๋ชจ์˜ ํ”ผํ•ด๋ฅผ ๊ฒฝํ—˜ํ•˜์˜€์œผ๋‚˜, ์˜ฌ๋ฆผํ”ฝ ํŠน์ˆ˜ ๋“ฑ์˜ ๊ฐœ๋ฐœ์••๋ ฅ์œผ๋กœ ์ธํ•œ ๋‚œ๊ฐœ๋ฐœ์ด ์šฐ๋ ค๋˜๋Š” ์ง€์—ญ์ด๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ํ•œ๋ฒˆ์˜ ๋ชจ์˜๋ฅผ ํ†ตํ•ด ํ˜„์žฌ์˜ ํ† ์ง€์ด์šฉ ๋ณด๋‹ค ์ ์–ด๋„ ํ•œ๊ฐ€์ง€ ์ด์ƒ์˜ ๋ชฉ์ ์—์„œ ์ข‹์€ ํผํฌ๋จผ์Šค๋ฅผ ๋ณด์ด๋Š” 100๊ฐœ์˜ ํŒŒ๋ ˆํ†  ์ตœ์  ๊ณ„ํš์•ˆ์„ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๋˜ํ•œ 5๊ฐœ์˜ ๋Œ€ํ‘œ์ ์ธ ๊ณ„ํš์•ˆ์„ ์„ ์ •ํ•˜์—ฌ ์‚ฐ์‚ฌํƒœ๋ฆฌ์Šคํฌ ์ตœ์†Œํ™”์™€ ์ „ํ™˜๋Ÿ‰ ์ตœ์†Œํ™” ๊ฐ„์— ๋ฐœ์ƒํ•˜๋Š” ์ƒ์‡„ ํšจ๊ณผ๋ฅผ ์„ค๋ช…ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ๊ธฐํ›„๋ณ€ํ™”์™€ ๊ด€๋ จ๋œ ๊ณต๊ฐ„ ์ ์‘ ์ „๋žต์˜ ์ˆ˜๋ฆฝ, ๋ณด๋‹ค ํ–ฅ์ƒ๋œ ๊ฐœ๋ฐœ๊ณ„ํš์„ ์œ„ํ•œ ์˜์‚ฌ๊ฒฐ์ •์„ ํšจ๊ณผ์ ์œผ๋กœ ์ง€์›ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ์„ธ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ๋ธ”๋ก ๊ทœ๋ชจ(neighborhood scale, 2m)์—์„œ ๋„์‹œ ๋‚ด ๋…น์ง€๊ณ„ํš์•ˆ์„ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋…น์ง€ ๊ณต๊ฐ„์€ ๋„์‹œ๋ฏผ์˜ ์‚ถ์˜ ์งˆ์— ๊ฒฐ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•œ ๋„์‹œ ์žฌ์ƒ ๋ฐ ๊ฐœ๋ฐœ๊ณ„ํš์—๋Š” ๋…น์ง€์™€ ์ง ๊ฐ„์ ‘์ ์œผ๋กœ ๊ด€๋ จ๋œ ์ „๋žต์ด ํฌํ•จ๋œ๋‹ค. ๋…น์ง€ ๊ณต๊ฐ„์€ ๋„์‹œ์ง€์—ญ ๋‚ด์—์„œ ์—ด์„ฌ ํ˜„์ƒ ์™„ํ™”, ์œ ์ถœ๋Ÿ‰ ์ €๊ฐ, ์ƒํƒœ ๋„คํŠธ์›Œํฌ ์ฆ์ง„ ๋“ฑ ๋‹ค์–‘ํ•œ ๊ธ์ •์  ํšจ๊ณผ๊ฐ€ ์žˆ์Œ์ด ์•Œ๋ ค์ ธ ์žˆ์œผ๋‚˜, ๊ณต๊ฐ„ ๊ณ„ํš์˜ ๊ด€์ ์—์„œ ์ด๋Ÿฌํ•œ ๋‹ค์–‘ํ•œ ํšจ๊ณผ๋ฅผ ์ข…ํ•ฉ์ , ์ •๋Ÿ‰์ ์œผ๋กœ ๊ณ ๋ ค๋œ ์‚ฌ๋ก€๋Š” ๋งค์šฐ ๋ฏธํกํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„์ง€๋ฐฐ ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ II์— ๊ธฐ์ดˆํ•˜์—ฌ ๋…น์ง€์˜ ์ƒํƒœ์  ์—ฐ๊ฒฐ์„ฑ ์ฆ์ง„, ์—ด์„ฌ ํšจ๊ณผ ์™„ํ™”์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ํšจ๊ณผ์™€ ์„ค์น˜์— ๋”ฐ๋ฅด๋Š” ๋น„์šฉ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๊ณ ๋ คํ•˜์—ฌ ์ ์ ˆํ•œ ๋…น์ง€์˜ ์œ ํ˜•๊ณผ ์œ„์น˜๋ฅผ ๊ฒฐ์ •ํ•œ ๋…น์ง€๊ณ„ํš์•ˆ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋ธ”๋ก ๊ทœ๋ชจ์˜ ๊ฐ€์ƒ์˜ ๋Œ€์ƒ์ง€์— ๋ณธ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ ์šฉํ•จ์œผ๋กœ์จ 30๊ฐœ์˜ ํŒŒ๋ ˆํ†  ์ตœ์  ๋…น์ง€๊ณ„ํš์•ˆ์„ ์ƒ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๊ฐ ๋ชฉ์  ๊ฐ„ ํผํฌ๋จผ์Šค๋ฅผ ๋น„๊ตํ•˜์—ฌ ๋…น์ง€์˜ ์—ด์„ฌ ์™„ํ™” ํšจ๊ณผ์™€ ์ƒํƒœ์  ์—ฐ๊ฒฐ์„ฑ ์ฆ์ง„ ํšจ๊ณผ ๊ฐ„์˜ ์ƒ์Šน ๊ด€๊ณ„ (synergistic relationship), ์ด๋Ÿฌํ•œ ๊ธ์ •์  ํšจ๊ณผ์™€ ๋น„์šฉ ์ ˆ๊ฐ ๊ฐ„์˜ ์ƒ์‡„ ํšจ๊ณผ (trade-off relationship)๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‹ค์–‘ํ•œ ๊ณ„ํš์•ˆ ์ค‘ ๋Œ€ํ‘œ์ ์ธ ํŠน์„ฑ์„ ์ง€๋‹ˆ๋Š” ๊ณ„ํš์•ˆ, ๋‹ค์ˆ˜์˜ ๊ณ„ํš์•ˆ์—์„œ ๊ณตํ†ต์ ์œผ๋กœ ๋…น์ง€ ์„ค์น˜๋ฅผ ์œ„ํ•ด ์„ ํƒ๋œ ์ฃผ์š” ํ›„๋ณด์ง€์—ญ ์—ญ์‹œ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œ๋œ ๋ชจ๋ธ์€ ๊ณ„ํš์•ˆ์˜ ์ˆ˜์ •์—์„œ๋ถ€ํ„ฐ ์ •๋Ÿ‰์  ํ‰๊ฐ€, ๊ณ„ํš์•ˆ ์„ ํƒ์— ์ด๋ฅด๋Š” ์ผ๋ จ์˜ ๊ธ์ •์ ์ธ ํ”ผ๋“œ๋ฐฑ ๊ณผ์ •์„ ์ˆ˜์—†์ด ๋ฐ˜๋ณตํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๋…น์ง€๊ณ„ํš ๊ณผ์ •์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ชจ๋ธ์˜ ๊ฒฐ๊ณผ ์—ญ์‹œ ๋‹ค์ž๊ฐ„ ํ˜‘๋ ฅ์  ๋””์ž์ธ (co-design)์„ ์œ„ํ•œ ์ดˆ์•ˆ์œผ๋กœ์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค.The meeting of heterogeneous goals while staying within the constraints of spatial planning is a nonlinear problem that cannot be solved by linear methodologies. Instead, this problem can be solved using multi-objective optimization algorithms such as genetic algorithms (GA), simulated annealing (SA), ant colony optimization (ACO), etc., and research related to this field has been increasing rapidly. GA, in particular, are the most frequently applied spatial optimization algorithms and are known to search for a good solution within a reasonable time period by maintaining a balance between exploration and exploitation. However, despite its good performance and applicability, it has not adequately addressed recent urgent issues such as climate change adaptation, disaster management, and green infrastructure planning. It is criticized for concentrating on only the allocation of specific land use such as urban and protected areas, or on the site selection of a specific facility. Therefore, in this study, a series of spatial optimizations are proposed to address recent urgent issues such as climate change, disaster management, and urban greening by supplementing quantitative assessment methodologies to the spatial planning process based on GA and Non-dominated Sorting Genetic Algorithm II (NSGA II). This optimization model needs to be understood as a tool for providing a draft plan that quantitatively meets the essential requirements so that the stakeholders can collaborate smoothly in the planning process. Three types of spatial planning optimization models are classified according to urgent issues. Spatial resolution, planning objectives, and constraints were also configured differently according to relevant issues. Each spatial planning optimization model was arranged in the order of increasing spatial resolution. In the first chapter, the optimization model was proposed to simulate land use scenarios to adapt to climate change on a provincial scale. As climate change is an ongoing phenomenon, many recent studies have focused on adaptation to climate change from a spatial perspective. However, little is known about how changing the spatial composition of land use could improve resilience to climate change. Consideration of climate change impacts when spatially allocating land use could be a useful and fundamental long-term adaptation strategy, particularly for regional planning. Here climate adaptation scenarios were identified on the basis of existing extents of three land use classes using Multi-objective Genetic Algorithms (MOGA) for a 9,982 km2 region with 3.5 million inhabitants in South Korea. Five objectives were selected for adaptation based on predicted climate change impacts and regional economic conditions: minimization of disaster damageand existing land use conversionmaximization of rice yieldprotection of high-species-richness areasand economic value. The 17 Pareto land use scenarios were generated by six weighted combinations of the adaptation objectives. Most scenarios, although varying in magnitude, showed better performance than the current spatial land use composition for all adaptation objectives, suggesting that some alteration of current land use patterns could increase overall climate resilience. Given the flexible structure of the optimization model, it is expected that regional stakeholders would efficiently generate other scenarios by adjusting the model parameters (weighting combinations) or replacing the input data (impact maps) and selecting a scenario depending on their preference or a number of problem-related factors. In the second chapter, the optimization model was proposed to simulate land use scenarios for managing disaster damage due to climate change on local scale. Extreme landslides triggered by rainfall in hilly regions frequently lead to serious damage, including casualties and property loss. The frequency of landslides may increase under climate change, because of the increased variability of precipitation. Developing urban areas outside landslide risk zones is the most effective method of reducing or preventing damageplanning in real life is, however, a complex and nonlinear problem. For such multi-objective problems, GA may be the most appropriate optimization tool. Therefore, comprehensive land use allocation plans were suggested using the NSGA II to overcome multi-objective problems, including the minimization of landslide risk, minimization of change, and maximization of compactness. The study area is Pyeongchang-gun, the host city of the 2018 Winter Olympics in Korea, where high development pressure has resulted in an urban sprawl into the hazard zone that experienced a large-scale landslide in 2006. We obtained 100 Pareto plans that are better than the actual land use data for at least one objective, with five plans that explain the trade-offs between meeting the first and the second objectives mentioned above. The results can be used by decision makers for better urban planning and for climate change-related spatial adaptation. In the third chapter, the optimization model was proposed to simulate urban greening plans on a neighborhood scale. Green space is fundamental to the good quality of life of residents, and therefore urban planning or improvement projects often include strategies directly or indirectly related to greening. Although green spaces generate positive effects such as cooling and reduction of rainwater runoff, and are an ecological corridor, few studies have examined the comprehensive multiple effects of greening in the urban planning context. To fill this gap in this fields literature, this study seeks to identify a planning model that determines the location and type of green cover based on its multiple effects (e.g., cooling and enhancement of ecological connectivity) and the implementation cost using NSGA II. The 30 Pareto-optimal plans were obtained by applying our model to a hypothetical landscape on a neighborhood scale. The results showed a synergistic relationship between cooling and enhancement of connectivity, as well as a trade-off relationship between greenery effects and implementation cost. It also defined critical lots for urban greening that are commonly selected in various plans. This model is expected to contribute to the improvement of existing planning processes by repeating the positive feedback loop: from plan modification to quantitative evaluation and selection of better plans. These optimal plans can also be considered as options for co-design by related stakeholders.1. INTRODUCTION 2. CHAPTER 1: Modelling Spatial Climate Change Land use Adaptation with Multi-Objective Genetic Algorithms to Improve Resilience for Rice Yield and Species Richness and to Mitigate Disaster Risk 2.1. Introduction 2.2. Study area 2.3. Methods 2.4. Results 2.5. Discussion 2.6. References 2.7. Supplemental material 3. CHAPTER 2: Multi-Objective Land-Use Allocation Considering Landslide Risk under Climate Change: Case Study in Pyeongchang-gun, Korea 3.1. Introduction 3.2. Material and Methods 3.3. Results 3.4. Discussion 3.5. Conclusion 3.6. References 4. CHAPTER 3: Multi-Objective Planning Model for Urban Greening based on Optimization Algorithms 3.1. Introduction 3.2. Methods 3.3. Results 3.4. Discussion 3.5. Conclusion 3.6. References 3.7. Appendix 5. CONCLUSION REFERENCESDocto

    Evolutionary population dynamics and multi-objective optimisation problems

    Get PDF
    Griffith Sciences, School of Information and Communication TechnologyFull Tex

    A DSS generator for multiobjective optimisation of spreadsheet-based models

    Get PDF
    Copyright ยฉ 2011 Elsevier. NOTICE: this is the authorโ€™s version of a work that was accepted for publication in Environmental Modelling & Software. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Modelling & Software Vol. 26 (2011), DOI: 10.1016/j.envsoft.2010.11.004Water management practice has benefited from the development of model-driven Decision Support Systems (DSS), and in particular those that combine simulation with single or multiple-objective optimisation tools. However, there are many performance, acceptance and adoption problems with these decision support tools caused mainly by misunderstandings between the communities of system developers and users. This paper presents a general-purpose decision-support system generator, GANetXL, for developing specific applications that require multiobjective optimisation of spreadsheet-based models. The system is developed as an Excel add-in that provides easy access to evolutionary multiobjective optimisation algorithms to non-specialists by incorporating an intuitive interactive graphical user interface that allows easy creation of specific decision-support applications. GANetXLโ€™s utility is demonstrated on two examples from water engineering practice, a simple water supply reservoir operation model with two objectives and a large combinatorial optimisation problem of pump scheduling in water distribution systems. The two examples show how GANetXL goes a long way toward closing the gap between the achievements in optimisation technology and the successful use of DSS in practice.Engineering and Physical Sciences Research Council (EPSRC

    An adaptive ant colony optimization framework for scheduling environmental flow management alternatives under varied environmental water availability conditions

    Get PDF
    Human water use is increasing and, as such, water for the environment is limited and needs to be managed efficiently. One method for achieving this is the scheduling of environmental flow management alternatives (EFMAs) (e.g., releases, wetland regulators), with these schedules generally developed over a number of years. However, the availability of environmental water changes annually as a result of natural variability (e.g., drought, wet years). To incorporate this variation and schedule EFMAs in a operational setting, a previously formulated multiobjective optimization approach for EFMA schedule development used for long-term planning has been modified and incorporated into an adaptive framework. As part of this approach, optimal schedules are updated at regular intervals during the planning horizon based on environmental water allocation forecasts, which are obtained using artificial neural networks. In addition, the changes between current and updated schedules can be minimized to reduce any disruptions to longterm planning. The utility of the approach is assessed by applying it to an 89km section of the River Murray in South Australia. Results indicate that the approach is beneficial under a range of hydrological conditions and an improved ecological response is obtained in a operational setting compared with previous longterm approaches. Also, it successfully produces trade-offs between the number of disruptions to schedules and the ecological response, with results suggesting that ecological response increases with minimal alterations required to existing schedules. Overall, the results indicate that the information obtained using the proposed approach potentially aides managers in the efficient management of environmental water.J. M. Szemis, H. R. Maier, and G. C. Dand
    • โ€ฆ
    corecore