278 research outputs found

    Pipelined Architecture for Soft-decision Iterative Projection Aggregation Decoding for RM Codes

    Full text link
    The recently proposed recursive projection-aggregation (RPA) decoding algorithm for Reed-Muller codes has received significant attention as it provides near-ML decoding performance at reasonable complexity for short codes. However, its complicated structure makes it unsuitable for hardware implementation. Iterative projection-aggregation (IPA) decoding is a modified version of RPA decoding that simplifies the hardware implementation. In this work, we present a flexible hardware architecture for the IPA decoder that can be configured from fully-sequential to fully-parallel, thus making it suitable for a wide range of applications with different constraints and resource budgets. Our simulation and implementation results show that the IPA decoder has 41% lower area consumption, 44% lower latency, four times higher throughput, but currently seven times higher power consumption for a code with block length of 128 and information length of 29 compared to a state-of-the-art polar successive cancellation list (SCL) decoder with comparable decoding performance

    Semi-Deterministic Subspace Selection for Sparse Recursive Projection-Aggregation Decoding of Reed-Muller Codes

    Full text link
    Recursive projection aggregation (RPA) decoding as introduced in [1] is a novel decoding algorithm which performs close to the maximum likelihood decoder for short-length Reed-Muller codes. Recently, an extension to RPA decoding, called sparse multi-decoder RPA (SRPA), has been proposed [2]. The SRPA approach makes use of multiple pruned RPA decoders to lower the amount of computations while keeping the performance loss small compared to RPA decoding. However, the use of multiple sparse decoders again increases the computational burden. Therefore, the focus is on the optimization of sparse single-decoder RPA decoding to keep the complexity small. In this paper, a novel method is proposed, to select subsets of subspaces used in the projection and aggregation step of SRPA decoding in order to decrease the decoding error probability on AWGN channels. The proposed method replaces the random selection of subspace subsets with a semi-deterministic selection method based on a figure of merit that evaluates the performance of each subspace. Our simulation results show that the semi-deterministic subspace selection improves the decoding performance up to 0.2dB0.2\,\text{dB} compared to SRPA. At the same time, the complexity of SRPA decoding for RM codes of order r3r\geq 3 is reduced by up to 81% compared to SRPA

    Sparse Multi-Decoder Recursive Projection Aggregation for Reed-Muller Codes

    Full text link
    Reed-Muller (RM) codes are one of the oldest families of codes. Recently, a recursive projection aggregation (RPA) decoder has been proposed, which achieves a performance that is close to the maximum likelihood decoder for short-length RM codes. One of its main drawbacks, however, is the large amount of computations needed. In this paper, we devise a new algorithm to lower the computational budget while keeping a performance close to that of the RPA decoder. The proposed approach consists of multiple sparse RPAs that are generated by performing only a selection of projections in each sparsified decoder. In the end, a cyclic redundancy check (CRC) is used to decide between output codewords. Simulation results show that our proposed approach reduces the RPA decoder's computations up to 80%80\% with negligible performance loss.Comment: 6 pages, 12 figure

    Turbo codes and turbo algorithms

    Get PDF
    In the first part of this paper, several basic ideas that prompted the coming of turbo codes are commented on. We then present some personal points of view on the main advances obtained in past years on turbo coding and decoding such as the circular trellis termination of recursive systematic convolutional codes and double-binary turbo codes associated with Max-Log-MAP decoding. A novel evaluation method, called genieinitialised iterative processing (GIIP), is introduced to assess the error performance of iterative processing. We show that using GIIP produces a result that can be viewed as a lower bound of the maximum likelihood iterative decoding and detection performance. Finally, two wireless communication systems are presented to illustrate recent applications of the turbo principle, the first one being multiple-input/multiple-output channel iterative detection and the second one multi-carrier modulation with linear precoding

    Hardware Implementation of Iterative Projection-Aggregation Decoding of Reed-Muller Codes

    Full text link
    In this work, we present a simplification and a corresponding hardware architecture for hard-decision recursive projection-aggregation (RPA) decoding of Reed-Muller (RM) codes. In particular, we transform the recursive structure of RPA decoding into a simpler and iterative structure with minimal error-correction degradation. Our simulation results for RM(7,3) show that the proposed simplification has a small error-correcting performance degradation (0.005 in terms of channel crossover probability) while reducing the average number of computations by up to 40%. In addition, we describe the first fully parallel hardware architecture for simplified RPA decoding. We present FPGA implementation results for an RM(6,3) code on a Xilinx Virtex-7 FPGA showing that our proposed architecture achieves a throughput of 171 Mbps at a frequency of 80 MHz

    Multi-Factor Pruning for Recursive Projection-Aggregation Decoding of RM Codes

    Full text link
    The recently introduced recursive projection aggregation (RPA) decoding method for Reed-Muller (RM) codes can achieve near-maximum likelihood (ML) decoding performance. However, its high computational complexity makes its implementation challenging for time- and resource-critical applications. In this work, we present a complexity reduction technique called multi-factor pruning that reduces the computational complexity of RPA significantly. Our simulation results show that the proposed pruning approach with appropriately selected factors can reduce the complexity of RPA by up to 92%92\% for RM(8,3)\text{RM}(8,3) while keeping the comparable error-correcting performance

    Study of information transfer optimization for communication satellites

    Get PDF
    The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit
    corecore