456 research outputs found

    Energy Harvesting for Secure OFDMA Systems

    Full text link
    Energy harvesting and physical-layer security in wireless networks are of great significance. In this paper, we study the simultaneous wireless information and power transfer (SWIPT) in downlink orthogonal frequency-division multiple access (OFDMA) systems, where each user applies power splitting to coordinate the energy harvesting and information decoding processes while secrecy information requirement is guaranteed. The problem is formulated to maximize the aggregate harvested power at the users while satisfying secrecy rate requirements of all users by subcarrier allocation and the optimal power splitting ratio selection. Due to the NP-hardness of the problem, we propose an efficient iterative algorithm. The numerical results show that the proposed method outperforms conventional methods.Comment: Accepted by WCSP 201

    Joint Resource Optimization for Multicell Networks with Wireless Energy Harvesting Relays

    Get PDF
    This paper first considers a multicell network deployment where the base station (BS) of each cell communicates with its cell-edge user with the assistance of an amplify-and-forward (AF) relay node. Equipped with a power splitter and a wireless energy harvester, the self-sustaining relay scavenges radio frequency (RF) energy from the received signals to process and forward the information. Our aim is to develop a resource allocation scheme that jointly optimizes (i) BS transmit powers, (ii) received power splitting factors for energy harvesting and information processing at the relays, and (iii) relay transmit powers. In the face of strong intercell interference and limited radio resources, we formulate three highly-nonconvex problems with the objectives of sum-rate maximization, max-min throughput fairness and sum-power minimization. To solve such challenging problems, we propose to apply the successive convex approximation (SCA) approach and devise iterative algorithms based on geometric programming and difference-of-convex-functions programming. The proposed algorithms transform the nonconvex problems into a sequence of convex problems, each of which is solved very efficiently by the interior-point method. We prove that our algorithms converge to the locally optimal solutions that satisfy the Karush-Kuhn-Tucker conditions of the original nonconvex problems. We then extend our results to the case of decode-and-forward (DF) relaying with variable timeslot durations. We show that our resource allocation solutions in this case offer better throughput than that of the AF counterpart with equal timeslot durations, albeit at a higher computational complexity. Numerical results confirm that the proposed joint optimization solutions substantially improve the network performance, compared with cases where the radio resource parameters are individually optimized
    • …
    corecore