5,143 research outputs found

    Computation-Communication Trade-offs and Sensor Selection in Real-time Estimation for Processing Networks

    Full text link
    Recent advances in electronics are enabling substantial processing to be performed at each node (robots, sensors) of a networked system. Local processing enables data compression and may mitigate measurement noise, but it is still slower compared to a central computer (it entails a larger computational delay). However, while nodes can process the data in parallel, the centralized computational is sequential in nature. On the other hand, if a node sends raw data to a central computer for processing, it incurs communication delay. This leads to a fundamental communication-computation trade-off, where each node has to decide on the optimal amount of preprocessing in order to maximize the network performance. We consider a network in charge of estimating the state of a dynamical system and provide three contributions. First, we provide a rigorous problem formulation for optimal real-time estimation in processing networks in the presence of delays. Second, we show that, in the case of a homogeneous network (where all sensors have the same computation) that monitors a continuous-time scalar linear system, the optimal amount of local preprocessing maximizing the network estimation performance can be computed analytically. Third, we consider the realistic case of a heterogeneous network monitoring a discrete-time multi-variate linear system and provide algorithms to decide on suitable preprocessing at each node, and to select a sensor subset when computational constraints make using all sensors suboptimal. Numerical simulations show that selecting the sensors is crucial. Moreover, we show that if the nodes apply the preprocessing policy suggested by our algorithms, they can largely improve the network estimation performance.Comment: 15 pages, 16 figures. Accepted journal versio

    Near-Optimal Sensor Scheduling for Batch State Estimation: Complexity, Algorithms, and Limits

    Full text link
    In this paper, we focus on batch state estimation for linear systems. This problem is important in applications such as environmental field estimation, robotic navigation, and target tracking. Its difficulty lies on that limited operational resources among the sensors, e.g., shared communication bandwidth or battery power, constrain the number of sensors that can be active at each measurement step. As a result, sensor scheduling algorithms must be employed. Notwithstanding, current sensor scheduling algorithms for batch state estimation scale poorly with the system size and the time horizon. In addition, current sensor scheduling algorithms for Kalman filtering, although they scale better, provide no performance guarantees or approximation bounds for the minimization of the batch state estimation error. In this paper, one of our main contributions is to provide an algorithm that enjoys both the estimation accuracy of the batch state scheduling algorithms and the low time complexity of the Kalman filtering scheduling algorithms. In particular: 1) our algorithm is near-optimal: it achieves a solution up to a multiplicative factor 1/2 from the optimal solution, and this factor is close to the best approximation factor 1/e one can achieve in polynomial time for this problem; 2) our algorithm has (polynomial) time complexity that is not only lower than that of the current algorithms for batch state estimation; it is also lower than, or similar to, that of the current algorithms for Kalman filtering. We achieve these results by proving two properties for our batch state estimation error metric, which quantifies the square error of the minimum variance linear estimator of the batch state vector: a) it is supermodular in the choice of the sensors; b) it has a sparsity pattern (it involves matrices that are block tri-diagonal) that facilitates its evaluation at each sensor set.Comment: Correction of typos in proof

    A Randomized Greedy Algorithm for Near-Optimal Sensor Scheduling in Large-Scale Sensor Networks

    Full text link
    We study the problem of scheduling sensors in a resource-constrained linear dynamical system, where the objective is to select a small subset of sensors from a large network to perform the state estimation task. We formulate this problem as the maximization of a monotone set function under a matroid constraint. We propose a randomized greedy algorithm that is significantly faster than state-of-the-art methods. By introducing the notion of curvature which quantifies how close a function is to being submodular, we analyze the performance of the proposed algorithm and find a bound on the expected mean square error (MSE) of the estimator that uses the selected sensors in terms of the optimal MSE. Moreover, we derive a probabilistic bound on the curvature for the scenario where{\color{black}{ the measurements are i.i.d. random vectors with bounded â„“2\ell_2 norm.}} Simulation results demonstrate efficacy of the randomized greedy algorithm in a comparison with greedy and semidefinite programming relaxation methods

    A Randomized Greedy Algorithm for Near-Optimal Sensor Scheduling in Large-Scale Sensor Networks

    Full text link
    We study the problem of scheduling sensors in a resource-constrained linear dynamical system, where the objective is to select a small subset of sensors from a large network to perform the state estimation task. We formulate this problem as the maximization of a monotone set function under a matroid constraint. We propose a randomized greedy algorithm that is significantly faster than state-of-the-art methods. By introducing the notion of curvature which quantifies how close a function is to being submodular, we analyze the performance of the proposed algorithm and find a bound on the expected mean square error (MSE) of the estimator that uses the selected sensors in terms of the optimal MSE. Moreover, we derive a probabilistic bound on the curvature for the scenario where{\color{black}{ the measurements are i.i.d. random vectors with bounded â„“2\ell_2 norm.}} Simulation results demonstrate efficacy of the randomized greedy algorithm in a comparison with greedy and semidefinite programming relaxation methods

    Deep Reinforcement Learning for Wireless Sensor Scheduling in Cyber-Physical Systems

    Full text link
    In many Cyber-Physical Systems, we encounter the problem of remote state estimation of geographically distributed and remote physical processes. This paper studies the scheduling of sensor transmissions to estimate the states of multiple remote, dynamic processes. Information from the different sensors have to be transmitted to a central gateway over a wireless network for monitoring purposes, where typically fewer wireless channels are available than there are processes to be monitored. For effective estimation at the gateway, the sensors need to be scheduled appropriately, i.e., at each time instant one needs to decide which sensors have network access and which ones do not. To address this scheduling problem, we formulate an associated Markov decision process (MDP). This MDP is then solved using a Deep Q-Network, a recent deep reinforcement learning algorithm that is at once scalable and model-free. We compare our scheduling algorithm to popular scheduling algorithms such as round-robin and reduced-waiting-time, among others. Our algorithm is shown to significantly outperform these algorithms for many example scenarios
    • …
    corecore