5,961 research outputs found

    Coalition Formation Games for Collaborative Spectrum Sensing

    Full text link
    Collaborative Spectrum Sensing (CSS) between secondary users (SUs) in cognitive networks exhibits an inherent tradeoff between minimizing the probability of missing the detection of the primary user (PU) and maintaining a reasonable false alarm probability (e.g., for maintaining a good spectrum utilization). In this paper, we study the impact of this tradeoff on the network structure and the cooperative incentives of the SUs that seek to cooperate for improving their detection performance. We model the CSS problem as a non-transferable coalitional game, and we propose distributed algorithms for coalition formation. First, we construct a distributed coalition formation (CF) algorithm that allows the SUs to self-organize into disjoint coalitions while accounting for the CSS tradeoff. Then, the CF algorithm is complemented with a coalitional voting game for enabling distributed coalition formation with detection probability guarantees (CF-PD) when required by the PU. The CF-PD algorithm allows the SUs to form minimal winning coalitions (MWCs), i.e., coalitions that achieve the target detection probability with minimal costs. For both algorithms, we study and prove various properties pertaining to network structure, adaptation to mobility and stability. Simulation results show that CF reduces the average probability of miss per SU up to 88.45% relative to the non-cooperative case, while maintaining a desired false alarm. For CF-PD, the results show that up to 87.25% of the SUs achieve the required detection probability through MWCComment: IEEE Transactions on Vehicular Technology, to appea

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Coalitional Games for Distributed Collaborative Spectrum Sensing in Cognitive Radio Networks

    Full text link
    Collaborative spectrum sensing among secondary users (SUs) in cognitive networks is shown to yield a significant performance improvement. However, there exists an inherent trade off between the gains in terms of probability of detection of the primary user (PU) and the costs in terms of false alarm probability. In this paper, we study the impact of this trade off on the topology and the dynamics of a network of SUs seeking to reduce the interference on the PU through collaborative sensing. Moreover, while existing literature mainly focused on centralized solutions for collaborative sensing, we propose distributed collaboration strategies through game theory. We model the problem as a non-transferable coalitional game, and propose a distributed algorithm for coalition formation through simple merge and split rules. Through the proposed algorithm, SUs can autonomously collaborate and self-organize into disjoint independent coalitions, while maximizing their detection probability taking into account the cooperation costs (in terms of false alarm). We study the stability of the resulting network structure, and show that a maximum number of SUs per formed coalition exists for the proposed utility model. Simulation results show that the proposed algorithm allows a reduction of up to 86.6% of the average missing probability per SU (probability of missing the detection of the PU) relative to the non-cooperative case, while maintaining a certain false alarm level. In addition, through simulations, we compare the performance of the proposed distributed solution with respect to an optimal centralized solution that minimizes the average missing probability per SU. Finally, the results also show how the proposed algorithm autonomously adapts the network topology to environmental changes such as mobility.Comment: in proceedings of IEEE INFOCOM 200

    Full-Duplex Cognitive Radio: A New Design Paradigm for Enhancing Spectrum Usage

    Full text link
    With the rapid growth of demand for ever-increasing data rate, spectrum resources have become more and more scarce. As a promising technique to increase the efficiency of the spectrum utilization, cognitive radio (CR) technique has the great potential to meet such a requirement by allowing un-licensed users to coexist in licensed bands. In conventional CR systems, the spectrum sensing is performed at the beginning of each time slot before the data transmission. This unfortunately results in two major problems: 1) transmission time reduction due to sensing, and 2) sensing accuracy impairment due to data transmission. To tackle these problems, in this paper we present a new design paradigm for future CR by exploring the full-duplex (FD) techniques to achieve the simultaneous spectrum sensing and data transmission. With FD radios equipped at the secondary users (SUs), SUs can simultaneously sense and access the vacant spectrum, and thus, significantly improve sensing performances and meanwhile increase data transmission efficiency. The aim of this article is to transform the promising conceptual framework into the practical wireless network design by addressing a diverse set of challenges such as protocol design and theoretical analysis. Several application scenarios with FD enabled CR are elaborated, and key open research directions and novel algorithms in these systems are discussed

    A Secure Cooperative Sensing Protocol for Cognitive Radio Networks

    Get PDF
    Cognitive radio networks sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. Spectrum sensing is more accurate if jointly performed by several reliable nodes. Even though cooperative sensing is an active area of research, the secure authentication of local sensing reports remains unsolved, thus empowering false results. This paper presents a distributed protocol based on digital signatures and hash functions, and an analysis of its security features. The system allows determining a final sensing decision from multiple sources in a quick and secure way.Las redes de radio cognitiva detectora de espectro se las arreglan para operar en las nuevas bandas sin molestar a los usuarios con licencia. La detección de espectro es más precisa si el conjunto está realizado por varios nodos fiables. Aunque la detección cooperativa es un área activa de investigación, la autenticación segura de informes locales de detección no ha sido resuelta, por lo tanto se pueden dar resultados falsos. Este trabajo presenta un protocolo distribuido basado en firmas digitales y en funciones hash, y un análisis de sus características de seguridad. El sistema permite determinar una decisión final de detección de múltiples fuentes de una manera rápida y segura.Les xarxes de ràdio cognitiva detectora d'espectre se les arreglen per operar en les noves bandes sense destorbar els usuaris amb llicència. La detecció d'espectre és més precisa si el conjunt està realitzat per diversos nodes fiables. Encara que la detecció cooperativa és una àrea activa d'investigació, l'autenticació segura d'informes locals de detecció no ha estat resolta, per tant es poden donar resultats falsos. Aquest treball presenta un protocol distribuït basat en signatures digitals i en funcions hash, i una anàlisi de les seves característiques de seguretat. El sistema permet determinar una decisió final de detecció de múltiples fonts d'una manera ràpida i segura

    Distributed Cooperative Sensing in Cognitive Radio Networks: An Overlapping Coalition Formation Approach

    Full text link
    Cooperative spectrum sensing has been shown to yield a significant performance improvement in cognitive radio networks. In this paper, we consider distributed cooperative sensing (DCS) in which secondary users (SUs) exchange data with one another instead of reporting to a common fusion center. In most existing DCS algorithms, the SUs are grouped into disjoint cooperative groups or coalitions, and within each coalition the local sensing data is exchanged. However, these schemes do not account for the possibility that an SU can be involved in multiple cooperative coalitions thus forming overlapping coalitions. Here, we address this problem using novel techniques from a class of cooperative games, known as overlapping coalition formation games, and based on the game model, we propose a distributed DCS algorithm in which the SUs self-organize into a desirable network structure with overlapping coalitions. Simulation results show that the proposed overlapping algorithm yields significant performance improvements, decreasing the total error probability up to 25% in the Q_m+Q_f criterion, the missed detection probability up to 20% in the Q_m/Q_f criterion, the overhead up to 80%, and the total report number up to 10%, compared with the state-of-the-art non-overlapping algorithm
    corecore