3,638 research outputs found

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms

    Rejecting Jobs to Minimize Load and Maximum Flow-time

    Full text link
    Online algorithms are usually analyzed using the notion of competitive ratio which compares the solution obtained by the algorithm to that obtained by an online adversary for the worst possible input sequence. Often this measure turns out to be too pessimistic, and one popular approach especially for scheduling problems has been that of "resource augmentation" which was first proposed by Kalyanasundaram and Pruhs. Although resource augmentation has been very successful in dealing with a variety of objective functions, there are problems for which even a (arbitrary) constant speedup cannot lead to a constant competitive algorithm. In this paper we propose a "rejection model" which requires no resource augmentation but which permits the online algorithm to not serve an epsilon-fraction of the requests. The problems considered in this paper are in the restricted assignment setting where each job can be assigned only to a subset of machines. For the load balancing problem where the objective is to minimize the maximum load on any machine, we give O(\log^2 1/\eps)-competitive algorithm which rejects at most an \eps-fraction of the jobs. For the problem of minimizing the maximum weighted flow-time, we give an O(1/\eps^4)-competitive algorithm which can reject at most an \eps-fraction of the jobs by weight. We also extend this result to a more general setting where the weights of a job for measuring its weighted flow-time and its contribution towards total allowed rejection weight are different. This is useful, for instance, when we consider the objective of minimizing the maximum stretch. We obtain an O(1/\eps^6)-competitive algorithm in this case. Our algorithms are immediate dispatch, though they may not be immediate reject. All these problems have very strong lower bounds in the speed augmentation model

    Random Keys Genetic Algorithms Scheduling and Rescheduling Systems for Common Production Systems

    Get PDF
    The majority of scheduling research deals with problems in specific production environments with specific objective functions. However, in many cases, more than one problem type and/or objective function exists, resulting in the need for a more generic and flexible system to generate schedules. Furthermore, most of the published scheduling research focuses on creating an optimal or near optimal initial schedule during the planning phase. However, after production processes start, circumstances like machine breakdowns, urgent jobs, and other unplanned events may render the schedule suboptimal, obsolete or even infeasible resulting in a rescheduling problem, which is typically also addressed for a specific production environment, constraints, and objective functions. This dissertation introduces a generic framework consisting of models and algorithms based on Random Keys Genetic Algorithms (RKGA) to handle both the scheduling and rescheduling problems in the most common production environments and for various types of objective functions. The Scheduling system produces predictive (initial) schedules for environments including single machines, flow shops, job shops and parallel machine production systems to optimize regular objective functions such as the Makespan and the Total Tardiness as well as non-regular objective functions such as the Total Earliness and Tardiness. To deal with the rescheduling problem, and using as a basis the same RKGA, a reactive Rescheduling system capable of repairing initial schedules after the occurrence of unexpected events is introduced. The reactive Rescheduling system was designed not only to optimize regular and non-regular objective functions but also to minimize the instability, a very important aspect in rescheduling to avoid shop chaos due to disruptions. Minimizing both schedule inefficiency and instability, however, turns the problem into a multi-objective optimization problem, which is even more difficult to solve. The computational experiments for the predictive model show that it is able to produce optimal or near optimal schedules to benchmark problems for different production environments and objective functions. Additional computational experiments conducted to test the reactive Rescheduling system under two types of unexpected events, machine breakdowns and the arrival of a rush job, show that the proposed framework and algorithms are robust in handling various problem types and computationally reasonable

    Constrained Nonlinear Model Predictive Control of an MMA Polymerization Process via Evolutionary Optimization

    Full text link
    In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller is designed for thermal trajectory tracking of the MMA polymerization. The input control signal to the process is constrained by the maximum thermal power provided by the heaters. The constrained optimization in the model predictive controller is solved via genetic algorithms to minimize a DMC cost function in each sampling interval.Comment: 12 pages, 9 figures, 28 reference

    Acceptance Ordering Scheduling Problem: The impact of an order-portfolio on a make-to-order firm’s profitability

    Get PDF
    Firms’ growth, the darling measure of investors, comes from higher revenues. Thus, sales and marketing departments make extreme efforts to accept as many customer orders as possible. Unfortunately, not all orders contribute equally to profits, and some orders may even reduce net profits. Thus, saying no (i.e., not accepting an order) may be a necessary condition for net profits growth. For understanding the impact of rejecting orders on profitability, we propose an order acceptance and scheduling problem (OAS). Although the OAS has extensively been studied in the literature, there is still some gap between these papers and real-life problems in industry. In an attempt to close that gap, the OAS we propose considers orders revenues, machines costs, holding costs and tardiness costs. We develop a mixed integer linear programming (MILP) model for solving this problem. Since the complexity of the problem makes it impossible for the MILP to solver large-scale instances, we also propose a metaheuristic algorithm. Numerical experiments show that the metaheuristic finds good quality solutions in short computational times. In the last part of the paper we confirm some managerial insights: higher holding and tardiness costs imply a lower acceptance of orders, forcing production has a concave negative impact on net profits, and accurately estimating costs is essential for good planning

    Enhancing the genetic-based scheduling in computational grids by a structured hierarchical population

    Get PDF
    Independent Job Scheduling is one of the most useful versions of scheduling in grid systems. It aims at computing efficient and optimal mapping of jobs and/or applications submitted by independent users to the grid resources. Besides traditional restrictions, mapping of jobs to resources should be computed under high degree of heterogeneity of resources, the large scale and the dynamics of the system. Because of the complexity of the problem, the heuristic and meta-heuristic approaches are the most feasible methods of scheduling in grids due to their ability to deliver high quality solutions in reasonable computing time. One class of such meta-heuristics is Hierarchic Genetic Strategy (HGS). It is defined as a variant of Genetic Algorithms (GAs) which differs from the other genetic methods by its capability of concurrent search of the solution space. In this work, we present an implementation of HGS for Independent Job Scheduling in dynamic grid environments. We consider the bi-objective version of the problem in which makespan and flowtime are simultaneously optimized. Based on our previous work, we improve the HGS scheduling strategy by enhancing its main branching operations. The resulting HGS-based scheduler is evaluated under the heterogeneity, the large scale and dynamics conditions using a grid simulator. The experimental study showed that the HGS implementation outperforms existing GA-based schedulers proposed in the literature.Peer ReviewedPostprint (author's final draft
    • …
    corecore