1,244 research outputs found

    QoS Based Capacity Enhancement for WCDMA Network with Coding Scheme

    Full text link
    The wide-band code division multiple access (WCDMA) based 3G and beyond cellular mobile wireless networks are expected to provide a diverse range of multimedia services to mobile users with guaranteed quality of service (QoS). To serve diverse quality of service requirements of these networks it necessitates new radio resource management strategies for effective utilization of network resources with coding schemes. Call admission control (CAC) is a significant component in wireless networks to guarantee quality of service requirements and also to enhance the network resilience. In this paper capacity enhancement for WCDMA network with convolutional coding scheme is discussed and compared with block code and without coding scheme to achieve a better balance between resource utilization and quality of service provisioning. The model of this network is valid for the real-time (RT) and non-real-time (NRT) services having different data rate. Simulation results demonstrate the effectiveness of the network using convolutional code in terms of capacity enhancement and QoS of the voice and video services.Comment: 10 Pages, VLSICS Journa

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable públic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Advanced mobile network monitoring and automated optimization methods

    Get PDF
    The operation of mobile networks is a complex task with the networks serving a large amount of subscribers with both voice and data services, containing extensive sets of elements, generating extensive amounts of measurement data and being controlled by a large amount of parameters. The objective of this thesis was to ease the operation of mobile networks by introducing advanced monitoring and automated optimization methods. In the monitoring domain the thesis introduced visualization and anomaly detection methods that were applied to detect intrusions, mal-functioning network elements and cluster network elements to do parameter optimization on network-element-cluster level. A key component in the monitoring methods was the Self-Organizing Map. In the automated optimization domain several rule-based Wideband CDMA radio access parameter optimization methods were introduced. The methods tackled automated optimization in areas such as admission control, handover control and mobile base station cell size setting. The results from test usage of the monitoring methods indicated good performance and simulations indicated that the automated optimization methods enable significant improvements in mobile network performance. The presented methods constitute promising feature candidates for the mobile network management system.reviewe

    4. generációs mobil rendszerek kutatása = Research on 4-th Generation Mobile Systems

    Get PDF
    A 3G mobil rendszerek szabványosítása a végéhez közeledik, legalábbis a meghatározó képességek tekintetében. Ezért létfontosságú azon technikák, eljárások vizsgálata, melyek a következő, 4G rendszerekben meghatározó szerepet töltenek majd be. Több ilyen kutatási irányvonal is létezik, ezek közül projektünkben a fontosabbakra koncentráltunk. A következőben felsoroljuk a kutatott területeket, és röviden összegezzük az elért eredményeket. Szórt spektrumú rendszerek Kifejlesztettünk egy új, rádiós interfészen alkalmazható hívásengedélyezési eljárást. Szimulációs vizsgálatokkal támasztottuk alá a megoldás hatékonyságát. A projektben kutatóként résztvevő Jeney Gábor sikeresen megvédte Ph.D. disszertációját neurális hálózatokra épülő többfelhasználós detekciós technikák témában. Az elért eredmények Imre Sándor MTA doktori disszertációjába is beépültek. IP alkalmazása mobil rendszerekben Továbbfejlesztettük, teszteltük és általánosítottuk a projekt keretében megalkotott új, gyűrű alapú topológiára épülő, a jelenleginél nagyobb megbízhatóságú IP alapú hozzáférési koncepciót. A témakörben Szalay Máté Ph.D. disszertációja már a nyilvános védésig jutott. Kvantum-informatikai módszerek alkalmazása 3G/4G detekcióra Új, kvantum-informatikai elvekre épülő többfelhasználós detekciós eljárást dolgoztunk ki. Ehhez új kvantum alapú algoritmusokat is kifejlesztettünk. Az eredményeket nemzetközi folyóiratok mellett egy saját könyvben is publikáltuk. | The project consists of three main research directions. Spread spectrum systems: we developed a new call admission control method for 3G air interfaces. Project member Gabor Jeney obtained the Ph.D. degree and project leader Sandor Imre submitted his DSc theses from this area. Application of IP in mobile systems: A ring-based reliable IP mobility mobile access concept and corresponding protocols have been developed. Project member Máté Szalay submitted his Ph.D. theses from this field. Quantum computing based solutions in 3G/4G detection: Quantum computing based multiuser detection algorithm was developed. Based on the results on this field a book was published at Wiley entitled: 'Quantum Computing and Communications - an engineering approach'

    An optimum dynamic priority-based call admission control scheme for universal mobile telecommunications system

    Get PDF
    The dynamism associated with quality of service (QoS) requirement for traffic emanating from smarter end users devices founded on the internet of things (IoTs) drive, places a huge demand on modern telecommunication infrastructure. Most telecom networks, currently utilize robust call admission control (CAC) policies to ameliorate this challenge. However, the need for smarter CAC has becomes imperative owing to the sensitivity of traffic currently being supported. In this work, we developed a prioritized CAC algorithm for third Generation (3G) wireless cellular network. Based on the dynamic priority CAC (DP-CAC) model, we proposed an optimal dynamic priority CAC (ODP-CAC) scheme for Universal Mobile Telecommunication System (UMTS). We then carried out simulation under heavy traffic load while also exploiting renegotiation among different call traffic classes. Also, we introduced queuing techniques to enhance the new calls success probability while still maintaining a good handoff failure across the network. Results show that ODP-CAC provides an improved performance with regards to the probability of call drop for new calls, network load utilization and grade of service with average percentage value of 15.7%, 5.4% and 0.35% respectively

    Using SINR as Vertical Handoff Criteria in Multimedia Wireless Networks

    Get PDF
    In the next generation multimedia wireless network environment that consists of heterogeneous access technologies, we need to offer the end user with multimedia QoS inside each access network as well as during vertical handoff between them. The vertical handoff algorithm have to be QoS aware, which cannot be achieved by using the traditional RSS as the vertical handoff criteria. In this paper, we propose a new vertical handoff algorithm using the receiving SINR from various access networks as the handoff criteria. By converting the different receiving SINR values, the handoff algorithm can have the knowledge of achievable bandwidths from both access networks, and make handoff decisions with multimedia QoS consideration. Analysis results confirms that the new SINR based vertical handoff algorithm is able to consistently offer the end user with maximum available bandwidth during vertical handoff comparing with the RSS based vertical handoff, whose performance differs under different network conditions

    Combined SINR Based Vertical Handoff Algorithm for Next Generation Heterogeneous Wireless Networks

    Get PDF
    Next generation heterogeneous wireless networks offer the end users with assurance of QoS inside each access network as well as during vertical handoff between them. For guaranteed QoS, the vertical handoff algorithm must be QoS aware, which cannot be achieved with the use of traditional RSS as the vertical handoff criteria. In this paper, we propose a novel vertical handoff algorithm which uses received SINR from various access networks as the handoff criteria. This algorithm consider the combined effects of SINR from different access networks with SINR value from one network being converted to equivalent SINR value to the target network, so the handoff algorithm can have the knowledge of achievable bandwidths from both access networks to make handoff decisions with QoS consideration. Analytical results confirm that the new SINR based vertical handoff algorithm can consistently offer the end user with maximum available bandwidth during vertical handoff contrary to the RSS based vertical handoff, whose performance differs under different network conditions. System level simulations also reveal the improvement of overall system throughputs using SINR based vertical handoff, comparing with the RSS based vertical handoff

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Low-complexity medium access control protocols for QoS support in third-generation radio access networks

    Get PDF
    One approach to maximizing the efficiency of medium access control (MAC) on the uplink in a future wideband code-division multiple-access (WCDMA)-based third-generation radio access network, and hence maximize spectral efficiency, is to employ a low-complexity distributed scheduling control approach. The maximization of spectral efficiency in third-generation radio access networks is complicated by the need to provide bandwidth-on-demand to diverse services characterized by diverse quality of service (QoS) requirements in an interference limited environment. However, the ability to exploit the full potential of resource allocation algorithms in third-generation radio access networks has been limited by the absence of a metric that captures the two-dimensional radio resource requirement, in terms of power and bandwidth, in the third-generation radio access network environment, where different users may have different signal-to-interference ratio requirements. This paper presents a novel resource metric as a solution to this fundamental problem. Also, a novel deadline-driven backoff procedure has been presented as the backoff scheme of the proposed distributed scheduling MAC protocols to enable the efficient support of services with QoS imposed delay constraints without the need for centralized scheduling. The main conclusion is that low-complexity distributed scheduling control strategies using overload avoidance/overload detection can be designed using the proposed resource metric to give near optimal performance and thus maintain a high spectral efficiency in third-generation radio access networks and that importantly overload detection is superior to overload avoidance
    corecore