1,761 research outputs found

    Band Allocation for Cognitive Radios with Buffered Primary and Secondary Users

    Full text link
    In this paper, we study band allocation of Ms\mathcal{M}_s buffered secondary users (SUs) to Mp\mathcal{M}_p orthogonal primary licensed bands, where each primary band is assigned to one primary user (PU). Each SU is assigned to one of the available primary bands with a certain probability designed to satisfy some specified quality of service (QoS) requirements for the SUs. In the proposed system, only one SU is assigned to a particular band. The optimization problem used to obtain the stability region's envelope (closure) is shown to be a linear program. We compare the stability region of the proposed system with that of a system where each SU chooses a band randomly with some assignment probability. We also compare with a fixed (deterministic) assignment system, where only one SU is assigned to one of the primary bands all the time. We prove the advantage of the proposed system over the other systems.Comment: Accepted in WCNC 201

    Optimal time sharing in underlay cognitive radio systems with RF energy harvesting

    Full text link
    Due to the fundamental tradeoffs, achieving spectrum efficiency and energy efficiency are two contending design challenges for the future wireless networks. However, applying radio-frequency (RF) energy harvesting (EH) in a cognitive radio system could potentially circumvent this tradeoff, resulting in a secondary system with limitless power supply and meaningful achievable information rates. This paper proposes an online solution for the optimal time allocation (time sharing) between the EH phase and the information transmission (IT) phase in an underlay cognitive radio system, which harvests the RF energy originating from the primary system. The proposed online solution maximizes the average achievable rate of the cognitive radio system, subject to the ε\varepsilon-percentile protection criteria for the primary system. The optimal time sharing achieves significant gains compared to equal time allocation between the EH and IT phases.Comment: Proceedings of the 2015 IEEE International Conference on Communications (IEEE ICC 2015), 8-12 June 2015, London, U

    On Orthogonal Band Allocation for Multi-User Multi-Band Cognitive Radio Networks: Stability Analysis

    Full text link
    In this work, we study the problem of band allocation of MsM_s buffered secondary users (SUs) to MpM_p primary bands licensed to (owned by) MpM_p buffered primary users (PUs). The bands are assigned to SUs in an orthogonal (one-to-one) fashion such that neither band sharing nor multi-band allocations are permitted. In order to study the stability region of the secondary network, the optimization problem used to obtain the stability region's envelope (closure) is established and is shown to be a linear program which can be solved efficiently and reliably. We compare our orthogonal allocation system with two typical low-complexity and intuitive band allocation systems. In one system, each cognitive user chooses a band randomly in each time slot with some assignment probability designed such that the system maintained stable, while in the other system fixed (deterministic) band assignment is adopted throughout the lifetime of the network. We derive the stability regions of these two systems. We prove mathematically, as well as through numerical results, the advantages of our proposed orthogonal system over the other two systems.Comment: Conditional Acceptance in IEEE Transactions on Communication

    Cooperative Cognitive Relaying Under Primary and Secondary Quality of Service Satisfaction

    Full text link
    This paper proposes a new cooperative protocol which involves cooperation between primary and secondary users. We consider a cognitive setting with one primary user and multiple secondary users. The time resource is partitioned into discrete time slots. Each time slot, a secondary user is scheduled for transmission according to time division multiple access, and the remainder of the secondary users, which we refer to as secondary relays, attempt to decode the primary packet. Afterwards, the secondary relays employ cooperative beamforming to forward the primary packet and to provide protection to the secondary destination of the secondary source scheduled for transmission from interference. We characterize the diversity-multiplexing tradeoff of the primary source under the proposed protocol. We consider certain quality of service for each user specified by its required throughput. The optimization problem is stated under such condition. It is shown that the optimization problem is linear and can be readily solved. We show that the sum of the secondary required throughputs must be less than or equal to the probability of correct packets reception.Comment: This paper was accepted in PIMRC 201
    • …
    corecore