68 research outputs found

    Novel Aspects of Interference Alignment in Wireless Communications

    Get PDF
    Interference alignment (IA) is a promising joint-transmission technology that essentially enables the maximum achievable degrees-of-freedom (DoF) in K-user interference channels. Fundamentally, wireless networks are interference-limited since the spectral efficiency of each user in the network is degraded with the increase of users. IA breaks through this barrier, that is caused by the traditional interference management techniques, and promises large gains in spectral efficiency and DoF, notably in interference limited environments. This dissertation concentrates on overcoming the challenges as well as exploiting the opportunities of IA in K-user multiple-input multiple-output (MIMO) interference channels. In particular, we consider IA in K-user MIMO interference channels in three novel aspects. In the first aspect, we develop a new IA solution by designing transmit precoding and interference suppression matrices through a novel iterative algorithm based on Min-Maxing strategy. Min-Maxing IA optimization problem is formulated such that each receiver maximizes the power of the desired signal, whereas it preserves the minimum leakage interference as a constraint. This optimization problem is solved by relaxing it into a standard semidefinite programming form, and additionally its convergence is proved. Furthermore, we propose a simplified Min-Maxing IA algorithm for rank-deficient interference channels to achieve the targeted performance with less complexity. Our numerical results show that Min-Maxing IA algorithm proffers significant sum-rate improvement in K-user MIMO interference channels compared to the existing algorithms in the literature at high signal-to-noise ratio (SNR) regime. Moreover, the simplified algorithm matches the optimal performance in the systems of rank-deficient channels. In the second aspect, we deal with the practical challenges of IA under realistic channels, where IA is highly affected by the spatial correlation. Data sum-rate and symbol error-rate of IA are dramatically degraded in real-world scenarios since the correlation between channels decreases the SNR of the received signal after alignment. For this reason, an acceptable sum-rate of IA in MIMO orthogonal frequency-division-multiplexing (MIMO-OFDM) interference channels was obtained in the literature by modifying the locations of network nodes and the separation between the antennas within each node in order to minimize the correlation between channels. In this regard, we apply transmit antenna selection to MIMO-OFDM IA systems either through bulk or per-subcarrier selection aiming at improving the sum-rate and/or error-rate performance under real-world channel circumstances while keeping the minimum spatial antenna separation of half-wavelengths. A constrained per-subcarrier antenna selection is performed to avoid subcarrier imbalance across the antennas of each user that is caused by per-subcarrier selection. Furthermore, we propose a sub-optimal antenna selection algorithm to reduce the computational complexity of the exhaustive search. An experimental testbed of MIMO-OFDM IA with antenna selection in indoor wireless network scenarios is implemented to collect measured channels. The performance of antenna selection in MIMO IA systems is evaluated using measured and deterministic channels, where antenna selection achieves considerable improvements in sum-rate and error-rate under real-world channels. Third aspect of this work is exploiting the opportunity of IA in resource management problem in OFDM based MIMO cognitive radio systems that coexist with primary systems. We propose to perform IA based resource allocation to improve the spectral efficiency of cognitive systems without affecting the quality of service (QoS) of the primary system. IA plays a vital role in the proposed algorithm enabling the secondary users (SUs) to cooperate and share the available spectrum aiming at increasing the DoF of the cognitive system. Nevertheless, the number of SUs that can share a given subcarrier is restricted to the IA feasibility conditions, where this limitation is considered in problem formulation. As the optimal solution for resource allocation problem is mixed-integer, we propose a two-phases efficient sub-optimal algorithm to handle this problem. In the first phase, frequency-clustering with throughput fairness consideration among SUs is performed to tackle the IA feasibility conditions, where each subcarrier is assigned to a feasible number of SUs. In the second phase, the power is allocated among subcarriers and SUs without violating the interference constraint to the primary system. Simulation results show that IA with frequency-clustering achieves a significant sum-rate increase compared to cognitive radio systems with orthogonal multiple access transmission techniques. The considered aspects with the corresponding achievements bring IA to have a powerful role in the future wireless communication systems. The contributions lead to significant improvements in the spectral efficiency of IA based wireless systems and the reliability of IA under real-world channels.Interference Alignment (IA) ist eine vielversprechende kooperative Übertragungstechnik, die die meisten Freiheitsgrade (engl. degrees-of-freedom, DoF) in Bezug auf Zeit, Frequenz und Ort in einem Mehrnutzer Überlagerungskanal bietet. Im Grunde sind Funksysteme Interferenz begrenzt, da die Spektraleffizienz jedes einzelnen Nutzers mit zunehmender Nutzerzahl sinkt. IA durchbricht die Schranke, die herkömmliches Interferenzmanagement errichtet und verspricht große Steigerungen der Spektraleffizienz und der Freiheitsgrade, besonders in Interferenzbegrenzter Umgebung. Die vorliegende Dissertation betrachtet bisher noch unerforschte Möglichkeiten von IA in Mehrnutzerszenarien für Mehrantennen- (MIMO) Kanäle sowie deren Anwendung in einem kognitiven Kommunikationssystem. Als erstes werden mit Hilfe eines effizienten iterativen Algorithmus, basierend auf der Min-Maxing Strategie, senderseitige Vorkodierungs- und Interferenzunterdrückungs Matrizen entwickelt. Das Min-Maxing Optimierungsproblem ist dadurch beschreiben, dass jeder Empfänger seine gewünschte Signalleistung maximiert, während das Minimum der Leck-Interferenz als Randbedingung beibehalten wird. Zur Lösung des Problems wird es in eine semidefinite Form überführt, zusätzlich wird deren Konvergenz nachgewiesen. Des Weiteren wird ein vereinfachter Algorithmus für nicht vollrangige Kanalmatrizen vorgeschlagen, um die Rechenkomplexität zu verringern. Wie numerische Ergebnisse belegen, bedeutet die Min-Maxing Strategie eine wesentliche Verbesserung des Systemdurchsatzes gegenüber den bisher in der Literatur beschriebenen Algorithmen für Mehrnutzer MIMO Szenarien im hohen Signal-Rausch-Verhältnis (engl. signal-to-noise ratio, SNR). Mehr noch, der vereinfachte Algorithmus zeigt das optimale Verhalten in einem System mit nicht vollrangigen Kanalmatrizen. Als zweites werden die IA Herausforderungen an Hand von realistischen/realen Kanälen in der Praxis untersucht. Hierbei wird das System stark durch räumliche Korrelation beeinträchtigt. Der Datendurchsatz sinkt und die Symbolfehlerrate steigt dramatisch unter diesen Bedingungen, da korrelierte Kanäle den SNR des empfangenen Signals nach dem Alignment verschlechtern. Aus diesem Grund wurde in der Literatur für IA in MIMO-OFDM Überlagerungskanälen sowohl die Position der einzelnen Netzwerkknoten als auch die Trennung zwischen den Antennen eines Knotens variiert, um so die Korrelierung der verschiedenen Kanäle zu minimieren. Das vorgeschlagene MIMO-OFDM IA System wählt unter mehreren Sendeantennen, entweder pro Unterträger oder für das komplette Signal, um so die Symbolfehlerrate und/oder die gesamt Datenrate zu verbessern, während die räumliche Trennung der Antennen auf die halbe Wellenlänge beschränkt bleiben soll. Bei der Auswahl pro Unterträger ist darauf zu achten, dass die Antennen gleichmäßig ausgelastet werden. Um die Rechenkomplexität für die vollständige Durchsuchung gering zu halten, wird ein suboptimaler Auswahlalgorithmus verwendet. Mit Hilfe einer Innenraummessanordnung werden reale Kanaldaten für die Simulationen gewonnen. Die Evaluierung des MIMO IA Systems mit Antennenauswahl für deterministische und gemessene Kanäle hat eine Verbesserung bei der Daten- und Fehlerrate unter realen Bedingungen ergeben. Als drittes beschäftigt sich die vorliegende Arbeit mit den Möglichkeiten, die sich durch MIMO IA Systeme für das Ressourcenmanagementproblem bei kognitiven Funksystemen ergeben. In kognitiven Funksystemen müssen MIMO IA Systeme mit primären koexistieren. Es wird eine IA basierte Ressourcenzuteilung vorgeschlagen, um so die spektrale Effizienz des kognitiven Systems zu erhöhen ohne die Qualität (QoS) des primären Systems zu beeinträchtigen. Der vorgeschlagenen IA Algorithmus sorgt dafür, dass die Zweitnutzer (engl. secondary user, SU) untereinander kooperieren und sich das zur Verfügung stehende Spektrum teilen, um so die DoF des kognitiven Systems zu erhöhen. Die Anzahl der SUs, die sich eine Unterträgerfrequenz teilen, ist durch die IA Randbedingungen begrenzt. Die Suche nach der optimalen Ressourcenverteilung stellt ein gemischt-ganzzahliges Problem dar, zu dessen Lösung ein effizienter zweistufiger suboptimaler Algorithmus vorgeschlagen wird. Im ersten Schritt wird durch Frequenzzusammenlegung (Clusterbildung), unter Berücksichtigung einer fairen Durchsatzverteilung unter den SUs, die IA Anforderung erfüllt. Dazu wird jede Unterträgerfrequenz einer praktikablen Anzahl an SUs zugeteilt. Im zweiten Schritt wird die Sendeleistung für die einzelnen Unterträgerfrequenzen und SUs so festgelegt, dass die Interferenzbedingungen des Primärsystems nicht verletzt werden. Die Simulationsergebnisse für IA mit Frequenzzusammenlegung zeigen eine wesentliche Verbesserung der Datenrate verglichen mit kognitiven Systemen, die auf orthogonalen Mehrfachzugriffsverfahren beruhen. Die in dieser Arbeit betrachteten Punkte und erzielten Lösungen führen zu einer wesentlichen Steigerung der spektralen Effizienz von IA Systemen und zeigen deren Zuverlässigkeit unter realen Bedingungen

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    5G Waveforms for Overlay D2D Communications: Effects of Time-Frequency Misalignment

    Full text link
    This paper analyses a scenario where a Device-To-Device (D2D) pair coexists with an Orthogonal Frequency Division Multiplexing (OFDM) based incumbent network. D2D transmitter communicates in parts of spectrum left free by cellular users, while respecting a given spectral mask. The D2D pair is misaligned in time and frequency with the cellular users. Furthermore, the D2D pair utilizes alternative waveforms to OFDM proposed for 5G. In this study, we show that it is not worth synchronising the D2D pair in time with respect to the cellular users. Indeed, the interference injected into the incumbent network has small variations with respect to time misalignment. We provide interference tables that encompass both time and frequency misalignment. We use them to analyse the maximum rate achievable by the D2D pair when it uses different waveforms. Then, we present numerical results showing what waveform should be utilized by the D2D pair according to the time-frequency resources that are not used by the incumbent network. Our results show that the delay induced by linearly convolved waveforms make them hardly applicable to short time windows, but that they dominate OFDM for long transmissions, mainly in the case where cellular users are very sensitive to interference.Comment: 7 pages, 7 figures, Accepted at IEEE ICC 201

    Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Get PDF
    The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA) related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks

    Waveform Design for 5G and beyond Systems

    Get PDF
    5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond

    Multiantenna Interference Mitigation Schemes and Resource Allocation for Cognitive Radio

    Get PDF
    Maximum and efficient utilization of available resources has been a central theme of research on various areas of science and engineering. Wireless communication is not an exception to this. With the rapid growth of wireless communication applications, radio frequency spectrum has become a valuable commodity. Supporting very high demands for data rate and throughput has become a challenging problem which requires innovative solutions. Dynamic spectrum sharing (DSS) based cognitive radio (CR) is envisioned as a promising technology for future wireless communication systems, such as fifth generation (5G) further development and sixth generation (6G). Extensive research has been done in the areas of CRs and it is considered to mitigate the spectral crowding problem by introducing the notion of opportunistic spectrum usage. Spectrum sensing, which enables CRs to identify spectral holes, is a critical component in CR technology. Furthermore, improving the efficiency of the radio spectrum use through spectrum sensing and dynamic spectrum access (DSA) is one of the emerging trends. In the first part of this thesis, we focus on enhancing the spectrum usage of CR’s using interference cancellation methods that provides considerable performance gains with realistic computational complexity, especially, in the context of the widely used multicarrier waveforms. The primary focus is on interference rejection combining (IRC) methods, applied to the black-space cognitive radio (BS-CR). Earlier studies on the BS-CR in the literature were focused on using CRs as repeaters for the primary transmitter to guarantee that the CR is not causing significant interference to nearby primary users’ receivers. This kind of approaches are transmitter-centric in nature. In this thesis, receiver-centric approaches such as multi-antenna diversity combining, especially enhanced IRC methods, are considered and evaluated. IRC methods have been widely studied and adopted in several practical wireless communication systems. We focus on developing such BS-CR schemes under strong interference conditions, which has not been studied in the CR literature so far. Spatial covariance matrix estimation under mobility and high carrier frequencies is found to be the most critical part of such scheme. Algorithms and methods to mitigate these effects are developed in this thesis and they are evaluated under realistic BS-CR receiver operating conditions. We use sample covariance estimation approach with silent gaps in the CR transmisison. Covariance interpolation between silent gaps improves greatly the robustness with time-varying channels. Good link performance can be reached with low mobility at carrier frequency considered for the TV white-spaced case. The proposed BS-CR scheme could be feasible at below 6 GHz frequencies with pedestrian mobilities. The second part of this thesis investigates the effect of radio frequency (RF) impairments on the performance of the cognitive wireless communication. There are various unavoidable imperfections, mainly due to the limitations of analog high-frequency transmitter and receiver circuits. These imperfections include power amplifier (PA) non-linearities, receiver nonlinearities, and carrier frequency offset (CFO), which are considered in this study. These effects lead to significant signal distortion and, as a result of this, the wireless link quality may deteriorate. In multicarrier communications such signal distortions may lead to additional interference, and it is important to evaluate their effects on spectrum sensing quality and on the performance of the proposed BS-CR scheme. This part of the thesis provides critical analysis and insights into such issues caused by RF imperfections and demonstrates the need for designing proper compensation techniques required to avoid/reduce such degradations. It is found that the transmitter’s PA nonlinearities affect in the same way as in basic OFDM systems and BS-CR receiver’s linearity requirements are similar to those for advanced DSP-intensive software defined radios. The CR receiver’s CFO with respect to the PU has the most critical effect. However, synchronizing the CR with the needed high accuracy is considered achievable due to the PU signal’s high-power level. The final part of the thesis briefly looks at alternate waveforms and techniques that can be used in CRs. The filter bank multicarrier (FBMC) waveforms are considered as an alternative to the widely used OFDM schemes. Here the core idea is interference avoidance, targeting to reduce the interference leakage between CRs and the primary systems, by means of using a waveform with good spectrum localization properties. FBMC system’s performance is compared with OFDM based system in the context of CRs. The performance is compared from a combined spectrum sensing and resource allocation point of view through simulations. It is found that well-localized CR waveforms improve the CR link capacity, but with poorly localized primary signals, these possibilities are rather limited
    corecore