214 research outputs found

    The Optimal Replenishment Policy under Trade Credit Financing with Ramp Type Demand and Demand Dependent Production Rate

    Get PDF
    This paper investigates the optimal replenishment policy for the retailer with the ramp type demand and demand dependent production rate involving the trade credit financing, which is not reported in the literatures. First, the two inventory models are developed under the above situation. Second, the algorithms are given to optimize the replenishment cycle time and the order quantity for the retailer. Finally, the numerical examples are carried out to illustrate the optimal solutions and the sensitivity analysis is performed. The results show that if the value of production rate is small, the retailer will lower the frequency of putting the orders to cut down the order cost; if the production rate is high, the demand dependent production rate has no effect on the optimal decisions. When the trade credit is less than the growth stage time, the retailer will shorten the replenishment cycle; when it is larger than the breakpoint of the demand, within the maturity stage of the products, the trade credit has no effect on the optimal order cycle and the optimal order quantity

    Supply chain finance for ameliorating and deteriorating products: a systematic literature review

    Get PDF
    Ameliorating and deteriorating products, or, more generally, items that change value over time, present a high sensitiveness to the surrounding environment (e.g., temperature, humidity, and light intensity). For this reason, they should be properly stored along the supply chain to guarantee the desired quality to the consumers. Specifically, ameliorating items face an increase in value if there are stored for longer periods, which can lead to higher selling price. At the same time, the costumers’ demand is sensitive to the price (i.e., the higher the selling price the lower the final demand), sensitiveness that is related to the quality of the products (i.e., lower sensitiveness for high-quality products). On the contrary, deteriorating items lose quality and value over time which result in revenue losses due to lost sales or reduced selling price. Since these products need to be properly stored (i.e., usually in temperature- and humidity-controlled warehouses) the holding costs, which comprise also the energy costs, may be particularly relevant impacting on the economic, environmental, and social sustainability of the supply chain. Furthermore, due to the recent economic crisis, companies (especially, small and medium enterprises) face payment difficulties of customers and high volatility of resources prices. This increases the risk of insolvency and on the other hand the financing needs. In this context, supply chain finance emerged as a mean for efficiency by coordinating the financial flow and providing a set of financial schemes aiming at optimizing accounts payable and receivable along the supply chain. The aim of the present study is thus to investigate through a systematic literature review the two main themes presented (i.e., inventory management models for products that change value over time, and financial techniques and strategies to support companies in inventory management) to understand if any financial technique has been studied for supporting the management of this class of products and to verify the existing literature gap

    The influence of financial conditions on optimal ordering and payment policies under progressive interest schemes

    Get PDF
    In many business-to-business transactions, the buyer is not required to pay immediately after the receipt of an order, but is instead allowed to postpone the payment to its suppliers for a certain period. In such a situation, the buyer can either settle the account at the end of the credit period or authorize the payment later, usually at the expense of interest that is charged by the supplier on the outstanding balance. Some payment terms, which are often referred to as trade credit contracts, contain progressive interest charges. In such cases, the supplier offers a sequence of credit periods, where the interest rate that is charged on the outstanding balance usually increases from period to period. If a buyer faces a progressive trade credit scheme, various options for settling the unpaid balance exist, where the financial impact of each option depends on the current credit interest structure and the alternative investment conditions. This paper studies the influence of different financial conditions in terms of alternative investment opportunities and credit interest structure on the optimal ordering and payment policies of a buyer on the condition that the supplier provides a progressive interest scheme. For this purpose, mathematical models are developed and analyzed

    Stackcelberg Game Inventory Model With Progressive Permissible Delay of Payment Scheme

    Get PDF
    Supplier has many schemes to motivate retailer to buy more and of them one is a progressive permissible delay of payment. Instead of analyst from the retailer side alone, in this chapter, we develop the inventory model of supplier and retailer. In reality, some suppliers and retailers cannot have collaboration and they try to optimize their own decision so we develop a Stackelberg Game model. Two models are developed wherein the first model supplier acts as the leader and in the second model, the retailer acts a leader. Since the models are complex, a hybrid Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) is developed to solve the model. A numerical analysis and sensitivity analysis are conducted to get management insights of the model. The results show that a Stackelberg Game model for progressive permissible delay of payment is sensitive in varies values of the first and second delay interest rate if supplier acts as a leader. The retailer gets less inventory cost when he acts as a leader compared to when vendor acts a leader at high interest rate of the first and second delay period

    New Models in Inventory Control

    Get PDF

    Sustainable Inventory Management Model for High-Volume Material with Limited Storage Space under Stochastic Demand and Supply

    Get PDF
    Inventory management and control has become an important management function, which is vital in ensuring the efficiency and profitability of a company’s operations. Hence, several research studies attempted to develop models to be used to minimise the quantities of excess inventory, in order to reduce their associated costs without compromising both operational efficiency and customers’ needs. The Economic Order Quantity (EOQ) model is one of the most used of these models; however, this model has a number of limiting assumptions, which led to the development of a number of extensions for this model to increase its applicability to the modern-day business environment. Therefore, in this research study, a sustainable inventory management model is developed based on the EOQ concept to optimise the ordering and storage of large-volume inventory, which deteriorates over time, with limited storage space, such as steel, under stochastic demand, supply and backorders. Two control systems were developed and tested in this research study in order to select the most robust system: an open-loop system, based on direct control through which five different time series for each stochastic variable were generated, before an attempt to optimise the average profit was conducted; and a closed-loop system, which uses a neural network, depicting the different business and economic conditions associated with the steel manufacturing industry, to generate the optimal control parameters for each week across the entire planning horizon. A sensitivity analysis proved that the closed-loop neural network control system was more accurate in depicting real-life business conditions, and more robust in optimising the inventory management process for a large-volume, deteriorating item. Moreover, due to its advantages over other techniques, a meta-heuristic Particle Swarm Optimisation (PSO) algorithm was used to solve this model. This model is implemented throughout the research in the case of a steel manufacturing factory under different operational and extreme economic scenarios. As a result of the case study, the developed model proved its robustness and accuracy in managing the inventory of such a unique industry
    corecore