423 research outputs found

    Optimal Sensing and Actuation Policies for Networked Mobile Agents in a Class of Cyber-Physical Systems

    Get PDF
    The main purpose of this dissertation is to define and solve problems on optimal sensing and actuating policies in Cyber-Physical Systems (CPSs). Cyber-physical system is a term that was introduced recently to define the increasing complexity of the interactions between computational hardwares and their physical environments. The problem of designing the ``cyber\u27\u27 part may not be trivial but can be solved from scratch. However, the ``physical\u27\u27 part, usually a natural physical process, is inherently given and has to be identified in order to propose an appropriate ``cyber\u27\u27 part to be adopted. Therefore, one of the first steps in designing a CPS is to identify its ``physical\u27\u27 part. The ``physical\u27\u27 part can belong to a large array of system classes. Among the possible candidates, we focus our interest on Distributed Parameter Systems (DPSs) whose dynamics can be modeled by Partial Differential Equations (PDE). DPSs are by nature very challenging to observe as their states are distributed throughout the spatial domain of interest. Therefore, systematic approaches have to be developed to obtain the optimal locations of sensors to optimally estimate the parameters of a given DPS. In this dissertation, we first review the recent methods from the literature as the foundations of our contributions. Then, we define new research problems within the above optimal parameter estimation framework. Two different yet important problems considered are the optimal mobile sensor trajectory planning and the accuracy effects and allocation of heterogeneous sensors. Under the remote sensing setting, we are able to determine the optimal trajectories of remote sensors. The problem of optimal robust estimation is then introduced and solved using an interlaced ``online\u27\u27 or ``real-time\u27\u27 scheme. Actuation policies are introduced into the framework to improve the estimation by providing the best stimulation of the DPS for optimal parameter identification, where trajectories of both sensors and actuators are optimized simultaneously. We also introduce a new methodology to solving fractional-order optimal control problems, with which we demonstrate that we can solve optimal sensing policy problems when sensors move in complex media, displaying fractional dynamics. We consider and solve the problem of optimal scale reconciliation using satellite imagery, ground measurements, and Unmanned Aerial Vehicles (UAV)-based personal remote sensing. Finally, to provide the reader with all the necessary background, the appendices contain important concepts and theorems from the literature as well as the Matlab codes used to numerically solve some of the described problems

    Coastal Ocean Forecasting: science foundation and user benefits

    Get PDF
    The advancement of Coastal Ocean Forecasting Systems (COFS) requires the support of continuous scientific progress addressing: (a) the primary mechanisms driving coastal circulation; (b) methods to achieve fully integrated coastal systems (observations and models), that are dynamically embedded in larger scale systems; and (c) methods to adequately represent air-sea and biophysical interactions. Issues of downscaling, data assimilation, atmosphere-wave-ocean couplings and ecosystem dynamics in the coastal ocean are discussed. These science topics are fundamental for successful COFS, which are connected to evolving downstream applications, dictated by the socioeconomic needs of rapidly increasing coastal populations

    CIRA annual report FY 2010/2011

    Get PDF

    Coastal high-frequency radars in the Mediterranean ??? Part 2: Applications in support of science priorities and societal needs

    Get PDF
    International audienceThe Mediterranean Sea is a prominent climate-change hot spot, with many socioeconomically vital coastal areas being the most vulnerable targets for maritime safety, diverse met-ocean hazards and marine pollution. Providing an unprecedented spatial and temporal resolution at wide coastal areas, high-frequency radars (HFRs) have been steadily gaining recognition as an effective land-based remote sensing technology for continuous monitoring of the surface circulation, increasingly waves and occasionally winds. HFR measurements have boosted the thorough scientific knowledge of coastal processes, also fostering a broad range of applications, which has promoted their integration in coastal ocean observing systems worldwide, with more than half of the European sites located in the Mediterranean coastal areas. In this work, we present a review of existing HFR data multidisciplinary science-based applications in the Mediterranean Sea, primarily focused on meeting end-user and science-driven requirements, addressing regional challenges in three main topics: (i) maritime safety, (ii) extreme hazards and (iii) environmental transport process. Additionally, the HFR observing and monitoring regional capabilities in the Mediterranean coastal areas required to underpin the underlying science and the further development of applications are also analyzed. The outcome of this assessment has allowed us to provide a set of recommendations for future improvement prospects to maximize the contribution to extending science-based HFR products into societally relevant downstream services to support blue growth in the Mediterranean coastal areas, helping to meet the UN's Decade of Ocean Science for Sustainable Development and the EU's Green Deal goals

    Coastal high-frequency radars in the Mediterranean - Part 2: Applications in support of science priorities and societal needs

    Get PDF
    The Mediterranean Sea is a prominent climate-change hot spot, with many socioeconomically vital coastal areas being the most vulnerable targets for maritime safety, diverse met-ocean hazards and marine pollution. Providing an unprecedented spatial and temporal resolution at wide coastal areas, high-frequency radars (HFRs) have been steadily gaining recognition as an effective land-based remote sensing technology for continuous monitoring of the surface circulation, increasingly waves and occasionally winds. HFR measurements have boosted the thorough scientific knowledge of coastal processes, also fostering a broad range of applications, which has promoted their integration in coastal ocean observing systems worldwide, with more than half of the European sites located in the Mediterranean coastal areas. In this work, we present a review of existing HFR data multidisciplinary science-based applications in the Mediterranean Sea, primarily focused on meeting end-user and science-driven requirements, addressing regional challenges in three main topics: (i) maritime safety, (ii) extreme hazards and (iii) environmental transport process. Additionally, the HFR observing and monitoring regional capabilities in the Mediterranean coastal areas required to underpin the underlying science and the further development of applications are also analyzed. The outcome of this assessment has allowed us to provide a set of recommendations for future improvement prospects to maximize the contribution to extending science-based HFR products into societally relevant downstream services to support blue growth in the Mediterranean coastal areas, helping to meet the UN's Decade of Ocean Science for Sustainable Development and the EU's Green Deal goals

    Proceedings Of The 18th Annual Meeting Of The Asia Oceania Geosciences Society (Aogs 2021)

    Get PDF
    The 18th Annual Meeting of the Asia Oceania Geosciences Society (AOGS 2021) was held from 1st to 6th August 2021. This proceedings volume includes selected extended abstracts from a challenging array of presentations at this conference. The AOGS Annual Meeting is a leading venue for professional interaction among researchers and practitioners, covering diverse disciplines of geosciences

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    MOSAiC Implementation Plan

    Get PDF
    This document is the second version of the Implementation Plan for the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) initiative and lays out a vision of how associated observational, modeling, synthesis, and programmatic objectives can be manifested. The document was drafted during an international workshop in Potsdam in July 2015, and further developed during two additional workshops at AWI Potsdam in December 2015 and February 2016. Support for this planning activity has been provided by the IASC-ICARPIII process, the Alfred Wegener Institute Helmholtz Centre for Polar- and Marine Research, and the University of Colorado/ NOAA-ESRL-PSD. This document provides a framework for planning the logistics of the project, developing scientific observing teams, organizing scientific contributions, coordinating the use of resources, and ensuring MOSAiC’s legacy of data and products. A brief overview and summaries of key science questions are provided in Section 1. Section 2 includes an overview of specific observational requirements, while Section 3 describes the coordination and design of specific field assets. Practical logistics plans are outlined in Section 4. Links with current and future satellite programs and model activities are given in Sections 5 and 6. The MOSAiC data management strategy is given in Section 7. Links to other programs are outlined in Section 8. The appendix (Section 9) lists the parameters to be measured and the participating groups

    Development of an operational tool for oil spill forecast: application to oil exposed regions

    Get PDF
    Tese de doutoramento, Ciências do Mar, da Terra e do Ambiente (Modelação), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014The objective of the following thesis is to present a modelling methodology, based on the MOHID system, which allows the development of coastal operational models by taking advantage of already implemented regional operational models using a downscaling approach. This increase in resolution allows studying the influence of coastal scale processes in the dynamics of oil spills, while contributing to more accurate forecasts. The methodology was used to forecast the evolution of oil spills in two distinct areas both prone to oil pollution events: Southwest Portuguese Coast and the Tuscany Archipelago (Italy). In both regions an operational model was developed and validated to a good level, using several types of oceanographic data available in European and global databases. The method was tested during the Costa Concordia accident, where operational forecasts aided the Italian authorities during the fuel removal operations. Also considered in this work are the interaction between waves/currents/wind in the dynamics of oil spills at sea, the identification of mesoscale circulation patterns and their influence on the risk to accidents as well as the integration of these numeric methods with early detection and monitoring systems.O objectivo da presente tese é apresentar uma metodologia de modelação, com base no sistema MOHID, que permite criar de forma robusta e expedita modelos operacionais costeiros tirando partido de modelos operacionais regionais já existentes numa abordagem de malhas encaixadas. Isto permite aumentar a resolução à escala costeira, conseguindo um estudo mais aprofundado da influência dos vários tipos de processos costeiros na dinâmica de derrames, ao mesmo tempo melhorando as previsões fornecidas. Esta metodologia foi usada para a previsão da evolução de manchas de hidrocarbonetos em duas zonas consideradas propensas a este tipo de poluição: Costa Sudoeste Portuguesa e o Arquipélago Toscano (Itália). Em ambos os casos de estudo os modelos operacionais implementados foram validados a um bom nível, utilizando vários tipos de dados oceanográficos disponíveis em bases de dados europeias e globais. A robustez do método foi testada durante as operações de retirada de combustível do navio Costa Concordia, para as quais o sistema forneceu previsões às autoridades Italianas. São ainda considerados na presente tese a interação entre ondas/correntes/vento na dinâmica das manchas de hidrocarbonetos no mar, a detecção de padrões de circulação de mesoescala e sua influência no risco a acidentes, bem como a integração destes métodos numéricos com sistemas de detecção e monitorização.Fundação para a Ciência e TecnologiaUniversidade do Algarv

    CIRA annual report FY 2011/2012

    Get PDF
    corecore