9,515 research outputs found

    High Multiplicity Strip Packing

    Get PDF
    In the two-dimensional high multiplicity strip packing problem (HMSPP), we are given k distinct rectangle types, where each rectangle type Ti has ni rectangles each with width 0 \u3c wi and height 0 \u3c hi The goal is to pack these rectangles into a strip of width 1, without rotating or overlapping the rectangles, such that the total height of the packing is minimized. Let OPT(I) be the optimal height of HMSPP on input I. In this thesis, we consider HMSPP for the case when k = 3 and present an OPT(I) + 5/3 polynomial time approximation algorithm for it. Additionally, we consider HMSPP for the case when k = 4 and present an OPT(I) + 5/2 polynomial time approximation algorithm for it

    Orthogonal Point Location and Rectangle Stabbing Queries in 3-d

    Get PDF
    In this work, we present a collection of new results on two fundamental problems in geometric data structures: orthogonal point location and rectangle stabbing. - Orthogonal point location. We give the first linear-space data structure that supports 3-d point location queries on n disjoint axis-aligned boxes with optimal O(log n) query time in the (arithmetic) pointer machine model. This improves the previous O(log^{3/2} n) bound of Rahul [SODA 2015]. We similarly obtain the first linear-space data structure in the I/O model with optimal query cost, and also the first linear-space data structure in the word RAM model with sub-logarithmic query time. - Rectangle stabbing. We give the first linear-space data structure that supports 3-d 4-sided and 5-sided rectangle stabbing queries in optimal O(log_wn+k) time in the word RAM model. We similarly obtain the first optimal data structure for the closely related problem of 2-d top-k rectangle stabbing in the word RAM model, and also improved results for 3-d 6-sided rectangle stabbing. For point location, our solution is simpler than previous methods, and is based on an interesting variant of the van Emde Boas recursion, applied in a round-robin fashion over the dimensions, combined with bit-packing techniques. For rectangle stabbing, our solution is a variant of Alstrup, Brodal, and Rauhe\u27s grid-based recursive technique (FOCS 2000), combined with a number of new ideas

    Dense Packings of Congruent Circles in Rectangles with a Variable Aspect Ratio

    Full text link
    We use computational experiments to find the rectangles of minimum area into which a given number n of non-overlapping congruent circles can be packed. No assumption is made on the shape of the rectangles. Most of the packings found have the usual regular square or hexagonal pattern. However, for 1495 values of n in the tested range n =< 5000, specifically, for n = 49, 61, 79, 97, 107,... 4999, we prove that the optimum cannot possibly be achieved by such regular arrangements. The evidence suggests that the limiting height-to-width ratio of rectangles containing an optimal hexagonal packing of circles tends to 2-sqrt(3) as n tends to infinity, if the limit exists.Comment: 21 pages, 13 figure

    A note on the lower bound for online strip packing

    Get PDF
    This note presents a lower bound of 3/2+33/6≈2.4573/2+\sqrt{33}/6 \approx 2.457 on the competitive ratio for online strip packing. The instance construction we use to obtain the lower bound was first coined by Brown, Baker and Katseff (1980). Recently this instance construction is used to improve the lower bound in computer aided proofs. We derive the best possible lower bound that can be obtained with this instance construction

    Minimum Perimeter Rectangles That Enclose Congruent Non-Overlapping Circles

    Get PDF
    We use computational experiments to find the rectangles of minimum perimeter into which a given number n of non-overlapping congruent circles can be packed. No assumption is made on the shape of the rectangles. In many of the packings found, the circles form the usual regular square-grid or hexagonal patterns or their hybrids. However, for most values of n in the tested range n =< 5000, e.g., for n = 7, 13, 17, 21, 22, 26, 31, 37, 38, 41, 43...,4997, 4998, 4999, 5000, we prove that the optimum cannot possibly be achieved by such regular arrangements. Usually, the irregularities in the best packings found for such n are small, localized modifications to regular patterns; those irregularities are usually easy to predict. Yet for some such irregular n, the best packings found show substantial, extended irregularities which we did not anticipate. In the range we explored carefully, the optimal packings were substantially irregular only for n of the form n = k(k+1)+1, k = 3, 4, 5, 6, 7, i.e., for n = 13, 21, 31, 43, and 57. Also, we prove that the height-to-width ratio of rectangles of minimum perimeter containing packings of n congruent circles tends to 1 as n tends to infinity.Comment: existence of irregular minimum perimeter packings for n not of the form (10) is conjectured; smallest such n is n=66; existence of irregular minimum area packings is conjectured, e.g. for n=453; locally optimal packings for the two minimization criteria are conjecturally the same (p.22, line 5); 27 pages, 12 figure

    On the Complexity of Anchored Rectangle Packing

    Get PDF

    Power Strip Packing of Malleable Demands in Smart Grid

    Full text link
    We consider a problem of supplying electricity to a set of N\mathcal{N} customers in a smart-grid framework. Each customer requires a certain amount of electrical energy which has to be supplied during the time interval [0,1][0,1]. We assume that each demand has to be supplied without interruption, with possible duration between ℓ\ell and rr, which are given system parameters (ℓ≤r\ell\le r). At each moment of time, the power of the grid is the sum of all the consumption rates for the demands being supplied at that moment. Our goal is to find an assignment that minimizes the {\it power peak} - maximal power over [0,1][0,1] - while satisfying all the demands. To do this first we find the lower bound of optimal power peak. We show that the problem depends on whether or not the pair ℓ,r\ell, r belongs to a "good" region G\mathcal{G}. If it does - then an optimal assignment almost perfectly "fills" the rectangle time×power=[0,1]×[0,A]time \times power = [0,1] \times [0, A] with AA being the sum of all the energy demands - thus achieving an optimal power peak AA. Conversely, if ℓ,r\ell, r do not belong to G\mathcal{G}, we identify the lower bound Aˉ>A\bar{A} >A on the optimal value of power peak and introduce a simple linear time algorithm that almost perfectly arranges all the demands in a rectangle [0,A/Aˉ]×[0,Aˉ][0, A /\bar{A}] \times [0, \bar{A}] and show that it is asymptotically optimal
    • …
    corecore