186 research outputs found

    Techniques for the Synthesis of Reversible Toffoli Networks

    Get PDF
    This paper presents novel techniques for the synthesis of reversible networks of Toffoli gates, as well as improvements to previous methods. Gate count and technology oriented cost metrics are used. Our synthesis techniques are independent of the cost metrics. Two new iterative synthesis procedure employing Reed-Muller spectra are introduced and shown to complement earlier synthesis approaches. The template simplification suggested in earlier work is enhanced through introduction of a faster and more efficient template application algorithm, updated (shorter) classification of the templates, and presentation of the new templates of sizes 7 and 9. A novel ``resynthesis'' approach is introduced wherein a sequence of gates is chosen from a network, and the reversible specification it realizes is resynthesized as an independent problem in hopes of reducing the network cost. Empirical results are presented to show that the methods are effective both in terms of the realization of all 3x3 reversible functions and larger reversible benchmark specifications.Comment: 20 pages, 5 figure

    Vacuum induced Stark shifts for quantum logic using a collective system in a high quality dispersive cavity

    Get PDF
    A collective system of atoms in a high quality cavity can be described by a nonlinear interaction which arises due to the Lamb shift of the energy levels due to the cavity vacuum [Agarwal et al., Phys. Rev. A 56, 2249 (1997)]. We show how this collective interaction can be used to perform quantum logic. In particular we produce schemes to realize CNOT gates not only for two-qubit but also for three-qubit systems. We also discuss realizations of Toffoli gates. Our effective Hamiltonian is also realized in other systems such as trapped ions or magnetic molecules

    Efficient Toffoli Gates Using Qudits

    Get PDF
    The simplest decomposition of a Toffoli gate acting on three qubits requires {\em five} 2-qubit gates. If we restrict ourselves to controlled-sign (or controlled-NOT) gates this number climbs to six. We show that the number of controlled-sign gates required to implement a Toffoli gate can be reduced to just {\em three} if one of the three quantum systems has a third state that is accessible during the computation, i.e. is actually a qutrit. Such a requirement is not unreasonable or even atypical since we often artificially enforce a qubit structure on multilevel quantums systems (eg. atoms, photonic polarization and spatial modes). We explore the implementation of these techniques in optical quantum processing and show that linear optical circuits could operate with much higher probabilities of success

    Tensor network method for reversible classical computation

    Full text link
    We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017)]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.We thank Justin Reyes, Oskar Pfeffer, and Lei Zhang for many useful discussions. The computations were carried out at Boston University's Shared Computing Cluster. We acknowledge the Condensed Matter Theory Visitors Program at Boston University for support. Z.-C. Y. and C. C. are supported by DOE Grant No. DE-FG02-06ER46316. E.R.M. is supported by NSF Grant No. CCF-1525943. (Condensed Matter Theory Visitors Program at Boston University; DE-FG02-06ER46316 - DOE; CCF-1525943 - NSF)Accepted manuscrip

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table
    • …
    corecore