1,238 research outputs found

    Quantum computing with mixed states

    Full text link
    We discuss a model for quantum computing with initially mixed states. Although such a computer is known to be less powerful than a quantum computer operating with pure (entangled) states, it may efficiently solve some problems for which no efficient classical algorithms are known. We suggest a new implementation of quantum computation with initially mixed states in which an algorithm realization is achieved by means of optimal basis independent transformations of qubits.Comment: 2 figures, 52 reference

    Fidelity of optimally controlled quantum gates with randomly coupled multiparticle environments

    Full text link
    This work studies the feasibility of optimal control of high-fidelity quantum gates in a model of interacting two-level particles. One particle (the qubit) serves as the quantum information processor, whose evolution is controlled by a time-dependent external field. The other particles are not directly controlled and serve as an effective environment, coupling to which is the source of decoherence. The control objective is to generate target one-qubit gates in the presence of strong environmentally-induced decoherence and under physically motivated restrictions on the control field. It is found that interactions among the environmental particles have a negligible effect on the gate fidelity and require no additional adjustment of the control field. Another interesting result is that optimally controlled quantum gates are remarkably robust to random variations in qubit-environment and inter-environment coupling strengths. These findings demonstrate the utility of optimal control for management of quantum-information systems in a very precise and specific manner, especially when the dynamics complexity is exacerbated by inherently uncertain environmental coupling.Comment: tMOP LaTeX, 9 pages, 3 figures; Special issue of the Journal of Modern Optics: 37th Winter Colloquium on the Physics of Quantum Electronics, 2-6 January 200

    Optimal two-qubit quantum circuits using exchange interactions

    Full text link
    The Heisenberg exchange interaction is a natural method to implement non-local (i.e., multi-qubit) quantum gates in quantum information processing. We consider quantum circuits comprising of (SWAP)α(SWAP)^\alpha gates, which are realized through the exchange interaction, and single-qubit gates. A universal two-qubit quantum circuit is constructed from only three (SWAP)α(SWAP)^\alpha gates and six single-qubit gates. We further show that three (SWAP)α(SWAP)^\alpha gates are not only sufficient, but necessary. Since six single-qubit gates are known to be necessary, our universal two-qubit circuit is optimal in terms of the number of {\em both} (SWAP)α(SWAP)^\alpha and single-qubit gates.Comment: 4 page

    Implementing Shor's algorithm on Josephson Charge Qubits

    Full text link
    We investigate the physical implementation of Shor's factorization algorithm on a Josephson charge qubit register. While we pursue a universal method to factor a composite integer of any size, the scheme is demonstrated for the number 21. We consider both the physical and algorithmic requirements for an optimal implementation when only a small number of qubits is available. These aspects of quantum computation are usually the topics of separate research communities; we present a unifying discussion of both of these fundamental features bridging Shor's algorithm to its physical realization using Josephson junction qubits. In order to meet the stringent requirements set by a short decoherence time, we accelerate the algorithm by decomposing the quantum circuit into tailored two- and three-qubit gates and we find their physical realizations through numerical optimization.Comment: 12 pages, submitted to Phys. Rev.
    • …
    corecore