1,151 research outputs found

    Approximations of Semicontinuous Functions with Applications to Stochastic Optimization and Statistical Estimation

    Get PDF
    Upper semicontinuous (usc) functions arise in the analysis of maximization problems, distributionally robust optimization, and function identification, which includes many problems of nonparametric statistics. We establish that every usc function is the limit of a hypo-converging sequence of piecewise affine functions of the difference-of-max type and illustrate resulting algorithmic possibilities in the context of approximate solution of infinite-dimensional optimization problems. In an effort to quantify the ease with which classes of usc functions can be approximated by finite collections, we provide upper and lower bounds on covering numbers for bounded sets of usc functions under the Attouch-Wets distance. The result is applied in the context of stochastic optimization problems defined over spaces of usc functions. We establish confidence regions for optimal solutions based on sample average approximations and examine the accompanying rates of convergence. Examples from nonparametric statistics illustrate the results

    Optimality of Poisson processes intensity learning with Gaussian processes

    Get PDF
    In this paper we provide theoretical support for the so-called "Sigmoidal Gaussian Cox Process" approach to learning the intensity of an inhomogeneous Poisson process on a dd-dimensional domain. This method was proposed by Adams, Murray and MacKay (ICML, 2009), who developed a tractable computational approach and showed in simulation and real data experiments that it can work quite satisfactorily. The results presented in the present paper provide theoretical underpinning of the method. In particular, we show how to tune the priors on the hyper parameters of the model in order for the procedure to automatically adapt to the degree of smoothness of the unknown intensity and to achieve optimal convergence rates

    Nonparametric Bayesian estimation of a H\"older continuous diffusion coefficient

    Get PDF
    We consider a nonparametric Bayesian approach to estimate the diffusion coefficient of a stochastic differential equation given discrete time observations over a fixed time interval. As a prior on the diffusion coefficient, we employ a histogram-type prior with piecewise constant realisations on bins forming a partition of the time interval. Specifically, these constants are realizations of independent inverse Gamma distributed randoma variables. We justify our approach by deriving the rate at which the corresponding posterior distribution asymptotically concentrates around the data-generating diffusion coefficient. This posterior contraction rate turns out to be optimal for estimation of a H\"older-continuous diffusion coefficient with smoothness parameter 0<λ≤1.0<\lambda\leq 1. Our approach is straightforward to implement, as the posterior distributions turn out to be inverse Gamma again, and leads to good practical results in a wide range of simulation examples. Finally, we apply our method on exchange rate data sets
    • …
    corecore