65 research outputs found

    Nearly optimal robust secret sharing

    Get PDF
    Abstract: We prove that a known approach to improve Shamir's celebrated secret sharing scheme; i.e., adding an information-theoretic authentication tag to the secret, can make it robust for n parties against any collusion of size δn, for any constant δ ∈ (0; 1/2). This result holds in the so-called “nonrushing” model in which the n shares are submitted simultaneously for reconstruction. We thus finally obtain a simple, fully explicit, and robust secret sharing scheme in this model that is essentially optimal in all parameters including the share size which is k(1+o(1))+O(κ), where k is the secret length and κ is the security parameter. Like Shamir's scheme, in this modified scheme any set of more than δn honest parties can efficiently recover the secret. Using algebraic geometry codes instead of Reed-Solomon codes, the share length can be decreased to a constant (only depending on δ) while the number of shares n can grow independently. In this case, when n is large enough, the scheme satisfies the “threshold” requirement in an approximate sense; i.e., any set of δn(1 + ρ) honest parties, for arbitrarily small ρ > 0, can efficiently reconstruct the secret

    It'll probably work out: improved list-decoding through random operations

    Full text link
    In this work, we introduce a framework to study the effect of random operations on the combinatorial list-decodability of a code. The operations we consider correspond to row and column operations on the matrix obtained from the code by stacking the codewords together as columns. This captures many natural transformations on codes, such as puncturing, folding, and taking subcodes; we show that many such operations can improve the list-decoding properties of a code. There are two main points to this. First, our goal is to advance our (combinatorial) understanding of list-decodability, by understanding what structure (or lack thereof) is necessary to obtain it. Second, we use our more general results to obtain a few interesting corollaries for list decoding: (1) We show the existence of binary codes that are combinatorially list-decodable from 1/2ϵ1/2-\epsilon fraction of errors with optimal rate Ω(ϵ2)\Omega(\epsilon^2) that can be encoded in linear time. (2) We show that any code with Ω(1)\Omega(1) relative distance, when randomly folded, is combinatorially list-decodable 1ϵ1-\epsilon fraction of errors with high probability. This formalizes the intuition for why the folding operation has been successful in obtaining codes with optimal list decoding parameters; previously, all arguments used algebraic methods and worked only with specific codes. (3) We show that any code which is list-decodable with suboptimal list sizes has many subcodes which have near-optimal list sizes, while retaining the error correcting capabilities of the original code. This generalizes recent results where subspace evasive sets have been used to reduce list sizes of codes that achieve list decoding capacity

    AG codes achieve list decoding capacity over contant-sized fields

    Full text link
    The recently-emerging field of higher order MDS codes has sought to unify a number of concepts in coding theory. Such areas captured by higher order MDS codes include maximally recoverable (MR) tensor codes, codes with optimal list-decoding guarantees, and codes with constrained generator matrices (as in the GM-MDS theorem). By proving these equivalences, Brakensiek-Gopi-Makam showed the existence of optimally list-decodable Reed-Solomon codes over exponential sized fields. Building on this, recent breakthroughs by Guo-Zhang and Alrabiah-Guruswami-Li have shown that randomly punctured Reed-Solomon codes achieve list-decoding capacity (which is a relaxation of optimal list-decodability) over linear size fields. We extend these works by developing a formal theory of relaxed higher order MDS codes. In particular, we show that there are two inequivalent relaxations which we call lower and upper relaxations. The lower relaxation is equivalent to relaxed optimal list-decodable codes and the upper relaxation is equivalent to relaxed MR tensor codes with a single parity check per column. We then generalize the techniques of GZ and AGL to show that both these relaxations can be constructed over constant size fields by randomly puncturing suitable algebraic-geometric codes. For this, we crucially use the generalized GM-MDS theorem for polynomial codes recently proved by Brakensiek-Dhar-Gopi. We obtain the following corollaries from our main result. First, randomly punctured AG codes of rate RR achieve list-decoding capacity with list size O(1/ϵ)O(1/\epsilon) and field size exp(O(1/ϵ2))\exp(O(1/\epsilon^2)). Prior to this work, AG codes were not even known to achieve list-decoding capacity. Second, by randomly puncturing AG codes, we can construct relaxed MR tensor codes with a single parity check per column over constant-sized fields, whereas (non-relaxed) MR tensor codes require exponential field size.Comment: 38 page
    corecore