3,019 research outputs found

    Anahita: A System for 3D Video Streaming with Depth Customization

    Get PDF
    Producing high-quality stereoscopic 3D content requires significantly more effort than preparing regular video footage. In order to assure good depth perception and visual comfort, 3D videos need to be carefully adjusted to specific viewing conditions before they are shown to viewers. While most stereoscopic 3D content is designed for viewing in movie theaters, where viewing conditions do not vary significantly, adapting the same content for viewing on home TV-sets, desktop displays, laptops, and mobile devices requires additional adjustments. To address this challenge, we propose a new system for 3D video streaming that provides automatic depth adjustments as one of its key features. Our system takes into account both the content and the display type in order to customize 3D videos and maximize their perceived quality. We propose a novel method for depth adjustment that is well-suited for videos of field sports such as soccer, football, and tennis. Our method is computationally efficient and it does not introduce any visual artifacts. We have implemented our 3D streaming system and conducted two user studies, which show: (i) adapting stereoscopic 3D videos for different displays is beneficial, and (ii) our proposed system can achieve up to 35% improvement in the perceived quality of the stereoscopic 3D content

    Transparent encryption with scalable video communication: Lower-latency, CABAC-based schemes

    Get PDF
    Selective encryption masks all of the content without completely hiding it, as full encryption would do at a cost in encryption delay and increased bandwidth. Many commercial applications of video encryption do not even require selective encryption, because greater utility can be gained from transparent encryption, i.e. allowing prospective viewers to glimpse a reduced quality version of the content as a taster. Our lightweight selective encryption scheme when applied to scalable video coding is well suited to transparent encryption. The paper illustrates the gains in reducing delay and increased distortion arising from a transparent encryption that leaves reduced quality base layer in the clear. Reduced encryption of B-frames is a further step beyond transparent encryption in which the computational overhead reduction is traded against content security and limited distortion. This spectrum of video encryption possibilities is analyzed in this paper, though all of the schemes maintain decoder compatibility and add no bitrate overhead as a result of jointly encoding and encrypting the input video by virtue of carefully selecting the entropy coding parameters that are encrypted. The schemes are suitable both for H.264 and HEVC codecs, though demonstrated in the paper for H.264. Selected Content Adaptive Binary Arithmetic Coding (CABAC) parameters are encrypted by a lightweight Exclusive OR technique, which is chosen for practicality

    Video Quality Prediction for Video over Wireless Access Networks (UMTS and WLAN)

    Get PDF
    Transmission of video content over wireless access networks (in particular, Wireless Local Area Networks (WLAN) and Third Generation Universal Mobile Telecommunication System (3G UMTS)) is growing exponentially and gaining popularity, and is predicted to expose new revenue streams for mobile network operators. However, the success of these video applications over wireless access networks very much depend on meeting the user’s Quality of Service (QoS) requirements. Thus, it is highly desirable to be able to predict and, if appropriate, to control video quality to meet user’s QoS requirements. Video quality is affected by distortions caused by the encoder and the wireless access network. The impact of these distortions is content dependent, but this feature has not been widely used in existing video quality prediction models. The main aim of the project is the development of novel and efficient models for video quality prediction in a non-intrusive way for low bitrate and resolution videos and to demonstrate their application in QoS-driven adaptation schemes for mobile video streaming applications. This led to five main contributions of the thesis as follows:(1) A thorough understanding of the relationships between video quality, wireless access network (UMTS and WLAN) parameters (e.g. packet/block loss, mean burst length and link bandwidth), encoder parameters (e.g. sender bitrate, frame rate) and content type is provided. An understanding of the relationships and interactions between them and their impact on video quality is important as it provides a basis for the development of non-intrusive video quality prediction models.(2) A new content classification method was proposed based on statistical tools as content type was found to be the most important parameter. (3) Efficient regression-based and artificial neural network-based learning models were developed for video quality prediction over WLAN and UMTS access networks. The models are light weight (can be implemented in real time monitoring), provide a measure for user perceived quality, without time consuming subjective tests. The models have potential applications in several other areas, including QoS control and optimization in network planning and content provisioning for network/service providers.(4) The applications of the proposed regression-based models were investigated in (i) optimization of content provisioning and network resource utilization and (ii) A new fuzzy sender bitrate adaptation scheme was presented at the sender side over WLAN and UMTS access networks. (5) Finally, Internet-based subjective tests that captured distortions caused by the encoder and the wireless access network for different types of contents were designed. The database of subjective results has been made available to research community as there is a lack of subjective video quality assessment databases.Partially sponsored by EU FP7 ADAMANTIUM Project (EU Contract 214751

    Avaliação da qualidade de experiência de vídeo em várias tecnologias

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesNowadays the internet is associated with many services. Combined with this fact, there is a marked increase of the users joining this service. In this perspective, it is required that the service providers guarantee a minimum quality to the network services. The Quality of Experience of services is quite crucial in the development of services in networks. Also noteworthy, the tra c increase in multimedia services, including video streaming, increases the probability of congesting the networks. In the perspective of the service provider, the monitoring is a solution to avoid saturation in network. This way, this dissertation proposes to develop a platform that allows a multimedia tra c monitoring in the Meo Go service provided by the operator Portugal Telecom Communications. The architecture of the adaptive streaming over HTTP has been studied and tested to obtain the quality of experience metrics. This adaptive streaming technique presents the smooth streaming, an architecture made by Microsoft company, and it is used in the Meo Go service. Then, it is monitored the metrics obtained with the video player. This analysis is done objectively and subjectively. In this phase, the objective implementation of the method allows to obtain the prediction value of the Quality of Experience by consumers. The selected metrics were derived from the state / performance of network and terminal device. The obtained metrics aim to simulate human action in video score quality. Otherwise, subjectively, it is conducted a survey based in a questionnaire to compare methods. In this phase it was created an on-line platform to allow the obtain a greater number of rankings and data processing. In the obtained results, rstly in the smooth streaming player, it is shown the adaptive streaming implementation technique. On the next phase, test scenarios were created to demonstrate the functioning of the method in many cases, with greater relevance for those ones with higher dynamic complexity. From the perspective of subjective and objective methods, these have values that con rm the architecture of the implemented module. Over time, the performance of the scoring the quality of video streaming services approaches the one in a human mental action.Nos dias de hoje a Internet é um dos meios com mais serviços associados. Conjugado a este facto, existe um acentuado aumento de utilizadores a aderir a este serviço. Nesta perspectiva existe a necessidade de garantir uma qualidade mínima por parte dos prestadores de serviços. A Qualidade de Experiência que os consumidores têm dos serviços é bastante crucial no desenvolvimento e optimização dos serviços nas redes. É ainda de salientar que o aumento do tráfego multimédia, nomeadamente os streamings de vídeo, apresenta incrementos na probabilidade de as redes se congestionarem. Na perspectiva do prestador de serviços a monitorização é a solução para evitar a saturação total. Neste sentido, esta dissertação pretende desenvolver uma plataforma que permite a monitorização do tráfego de multimédia do serviço do Meo Go, fornecido pela operadora Portugal Telecom Comunicações. Neste trabalho foi necessário investigar e testar a arquitectura do streaming adaptativo sobre HTTP para ser possível obter métricas de qualidade de experiência. Este streaming adaptativo apresenta a técnica de smooth streaming, sendo esta arquitectura projectada pela empresa Microsoft e utilizada no serviço Meo Go. Posteriormente foram monitorizadas as métricas que se obtiveram no player de vídeo. Esta análise foi realizada de forma objectiva e subjectiva. Nesta fase da implementação objectiva do método em que se pretende obter uma predição do valor de Qualidade de Experiência por parte do consumidor, foram seleccionadas as métricas oriundas do estado/desempenho da rede e do dispositivo terminal. As métricas obtidas entram num processo de tratamento que pretende simular a ação humana nas classificações da qualidade dos vídeos. De outra forma, subjectivamente, foi realizada uma pesquisa, com base num questionário, de modo a comparar os métodos. Nesta etapa foi gerada uma plataforma online que possibilitou obter um maior número de classificações dos vídeos para posteriormente se proceder ao tratamento de dados. Nos resultados obtidos, primeiramente ao nível do player de smooth streaming, estes permitem analisar a técnica de implementação de streaming adaptativo. Numa fase seguinte foram criados cenários de teste para comprovar o funcionamento do método em diversas situações, tendo com maior relevância aqueles que contêm dinâmicas mais complexas. Na perspectiva dos métodos subjectivo e objectivo, estes apresentam valores que confirmam a arquitectura do módulo implementado. Adicionalmente, o desempenho do método em classificar a qualidade de serviço de vídeo streaming, ao longo do tempo, apresentou valores que se aproximam da dinâmica esperada numa ação mental humana

    Activity-driven content adaptation for effective video summarisation

    Get PDF
    In this paper, we present a novel method for content adaptation and video summarization fully implemented in compressed-domain. Firstly, summarization of generic videos is modeled as the process of extracted human objects under various activities/events. Accordingly, frames are classified into five categories via fuzzy decision including shot changes (cut and gradual transitions), motion activities (camera motion and object motion) and others by using two inter-frame measurements. Secondly, human objects are detected using Haar-like features. With the detected human objects and attained frame categories, activity levels for each frame are determined to adapt with video contents. Continuous frames belonging to same category are grouped to form one activity entry as content of interest (COI) which will convert the original video into a series of activities. An overall adjustable quota is used to control the size of generated summarization for efficient streaming purpose. Upon this quota, the frames selected for summarization are determined by evenly sampling the accumulated activity levels for content adaptation. Quantitative evaluations have proved the effectiveness and efficiency of our proposed approach, which provides a more flexible and general solution for this topic as domain-specific tasks such as accurate recognition of objects can be avoided

    A multi-objective performance optimisation framework for video coding

    Get PDF
    Digital video technologies have become an essential part of the way visual information is created, consumed and communicated. However, due to the unprecedented growth of digital video technologies, competition for bandwidth resources has become fierce. This has highlighted a critical need for optimising the performance of video encoders. However, there is a dual optimisation problem, wherein, the objective is to reduce the buffer and memory requirements while maintaining the quality of the encoded video. Additionally, through the analysis of existing video compression techniques, it was found that the operation of video encoders requires the optimisation of numerous decision parameters to achieve the best trade-offs between factors that affect visual quality; given the resource limitations arising from operational constraints such as memory and complexity. The research in this thesis has focused on optimising the performance of the H.264/AVC video encoder, a process that involved finding solutions for multiple conflicting objectives. As part of this research, an automated tool for optimising video compression to achieve an optimal trade-off between bit rate and visual quality, given maximum allowed memory and computational complexity constraints, within a diverse range of scene environments, has been developed. Moreover, the evaluation of this optimisation framework has highlighted the effectiveness of the developed solution

    An Analysis of VP8, a new video codec for the web

    Get PDF
    Video is an increasingly ubiquitous part of our lives. Fast and efficient video codecs are necessary to satisfy the increasing demand for video on the web and mobile devices. However, open standards and patent grants are paramount to the adoption of video codecs across different platforms and browsers. Google On2 released VP8 in May 2010 to compete with H.264, the current standard of video codecs, complete with source code, specification and a perpetual patent grant. As the amount of video being created every day is growing rapidly, the decision of which codec to encode this video with is paramount; if a low quality codec or a restrictively licensed codec is used, the video recorded might be of little to no use. We sought to study VP8 and its quality versus its resource consumption compared to H.264 -- the most popular current video codec -- so that reader may make an informed decision for themselves or for their organizations about whether to use H.264 or VP8, or something else entirely. We examined VP8 in detail, compared its theoretical complexity to H.264 and measured the efficiency of its current implementation. VP8 shares many facets of its design with H.264 and other Discrete Cosine Transform (DCT) based video codecs. However, VP8 is both simpler and less feature rich than H.264, which may allow for rapid hardware and software implementations. As it was designed for the Internet and newer mobile devices, it contains fewer legacy features, such as interlacing, than H.264 supports. To perform quality measurements, the open source VP8 implementation libvpx was used. This is the reference implementation. For H.264, the open source H.264 encoder x264 was used. This encoder has very high performance, and is often rated at the top of its field in efficiency. The JM reference encoder was used to establish a baseline quality for H.264. Our findings indicate that VP8 performs very well at low bitrates, at resolutions at and below CIF. VP8 may be able to successfully displace H.264 Baseline in the mobile streaming video domain. It offers higher quality at a lower bitrate for low resolution images due to its high performing entropy coder and non-contiguous macroblock segmentation. At higher resolutions, VP8 still outperforms H.264 Baseline, but H.264 High profile leads. At HD resolution (720p and above), H.264 is significantly better than VP8 due to its superior motion estimation and adaptive coding. There is little significant difference between the intra-coding performance between H.264 and VP8. VP8\u27s in-loop deblocking filter outperforms H.264\u27s version. H.264\u27s inter-coding, with full support for B frames and weighting outperforms VP8\u27s alternate reference scheme, although this may improve in the future. On average, VP8\u27s feature set is less complex than H.264\u27s equivalents, which, along with its open source implementation, may spur development in the future. These findings indicate that VP8 has strong fundamentals when compared with H.264, but that it lacks optimization and maturity. It will likely improve as engineers optimize VP8\u27s reference implementation, or when a competing implementation is developed. We recommend several areas that the VP8 developers should focus on in the future
    • …
    corecore