7,884 research outputs found

    Applications of the Adversary Method in Quantum Query Algorithms

    Full text link
    In the thesis, we use a recently developed tight characterisation of quantum query complexity, the adversary bound, to develop new quantum algorithms and lower bounds. Our results are as follows: * We develop a new technique for the construction of quantum algorithms: learning graphs. * We use learning graphs to improve quantum query complexity of the triangle detection and the kk-distinctness problems. * We prove tight lower bounds for the kk-sum and the triangle sum problems. * We construct quantum algorithms for some subgraph-finding problems that are optimal in terms of query, time and space complexities. * We develop a generalisation of quantum walks that connects electrical properties of a graph and its quantum hitting time. We use it to construct a time-efficient quantum algorithm for 3-distinctness.Comment: PhD Thesis, 169 page

    Optimal Query Complexity for Reconstructing Hypergraphs

    Get PDF
    In this paper we consider the problem of reconstructing a hidden weighted hypergraph of constant rank using additive queries. We prove the following: Let GG be a weighted hidden hypergraph of constant rank with n vertices and mm hyperedges. For any mm there exists a non-adaptive algorithm that finds the edges of the graph and their weights using O(mlognlogm) O(\frac{m\log n}{\log m}) additive queries. This solves the open problem in [S. Choi, J. H. Kim. Optimal Query Complexity Bounds for Finding Graphs. {\em STOC}, 749--758,~2008]. When the weights of the hypergraph are integers that are less than O(poly(nd/m))O(poly(n^d/m)) where dd is the rank of the hypergraph (and therefore for unweighted hypergraphs) there exists a non-adaptive algorithm that finds the edges of the graph and their weights using O(mlogndmlogm). O(\frac{m\log \frac{n^d}{m}}{\log m}). additive queries. Using the information theoretic bound the above query complexities are tight

    Upper bounds on quantum query complexity inspired by the Elitzur-Vaidman bomb tester

    Get PDF
    Inspired by the Elitzur-Vaidman bomb testing problem [arXiv:hep-th/9305002], we introduce a new query complexity model, which we call bomb query complexity B(f)B(f). We investigate its relationship with the usual quantum query complexity Q(f)Q(f), and show that B(f)=Θ(Q(f)2)B(f)=\Theta(Q(f)^2). This result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on Q(f)=Θ(B(f))Q(f)=\Theta(\sqrt{B(f)}). We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with O(n1.5)O(n^{1.5}) quantum query complexity, improving the best known algorithm of O(n1.5logn)O(n^{1.5}\sqrt{\log n}) [arXiv:quant-ph/0606127]. Applying this method to the maximum bipartite matching problem gives an O(n1.75)O(n^{1.75}) algorithm, improving the best known trivial O(n2)O(n^2) upper bound.Comment: 32 pages. Minor revisions and corrections. Regev and Schiff's proof that P(OR) = \Omega(N) remove
    corecore