19,265 research outputs found

    Adaptive weight estimator for quantum error correction

    Get PDF
    Quantum error correction of a surface code or repetition code requires the pairwise matching of error events in a space-time graph of qubit measurements, such that the total weight of the matching is minimized. The input weights follow from a physical model of the error processes that affect the qubits. This approach becomes problematic if the system has sources of error that change over time. Here we show how the weights can be determined from the measured data in the absence of an error model. The resulting adaptive decoder performs well in a time-dependent environment, provided that the characteristic time scale τenv\tau_{\mathrm{env}} of the variations is greater than δt/pˉ\delta t/\bar{p}, with δt\delta t the duration of one error-correction cycle and pˉ\bar{p} the typical error probability per qubit in one cycle.Comment: 5 pages, 4 figure

    Adaptive quantum metrology under general Markovian noise

    Get PDF
    We consider a general model of unitary parameter estimation in presence of Markovian noise, where the parameter to be estimated is associated with the Hamiltonian part of the dynamics. In absence of noise, unitary parameter can be estimated with precision scaling as 1/T1/T, where TT is the total probing time. We provide a simple algebraic condition involving solely the operators appearing in the quantum Master equation, implying at most 1/T1/\sqrt{T} scaling of precision under the most general adaptive quantum estimation strategies. We also discuss the requirements a quantum error-correction like protocol must satisfy in order to regain the 1/T1/T precision scaling in case the above mentioned algebraic condition is not satisfied. Furthermore, we apply the developed methods to understand fundamental precision limits in atomic interferometry with many-body effects taken into account, shedding new light on the performance of non-linear metrological models.Comment: 13 pages, see also arXiv:1706.0244

    Designing High-Fidelity Single-Shot Three-Qubit Gates: A Machine Learning Approach

    Get PDF
    Three-qubit quantum gates are key ingredients for quantum error correction and quantum information processing. We generate quantum-control procedures to design three types of three-qubit gates, namely Toffoli, Controlled-Not-Not and Fredkin gates. The design procedures are applicable to a system comprising three nearest-neighbor-coupled superconducting artificial atoms. For each three-qubit gate, the numerical simulation of the proposed scheme achieves 99.9% fidelity, which is an accepted threshold fidelity for fault-tolerant quantum computing. We test our procedure in the presence of decoherence-induced noise as well as show its robustness against random external noise generated by the control electronics. The three-qubit gates are designed via the machine learning algorithm called Subspace-Selective Self-Adaptive Differential Evolution (SuSSADE).Comment: 18 pages, 13 figures. Accepted for publication in Phys. Rev. Applie

    Quantum metrology with full and fast quantum control

    Full text link
    We establish general limits on how precise a parameter, e.g. frequency or the strength of a magnetic field, can be estimated with the aid of full and fast quantum control. We consider uncorrelated noisy evolutions of N qubits and show that fast control allows to fully restore the Heisenberg scaling (~1/N^2) for all rank-one Pauli noise except dephasing. For all other types of noise the asymptotic quantum enhancement is unavoidably limited to a constant-factor improvement over the standard quantum limit (~1/N) even when allowing for the full power of fast control. The latter holds both in the single-shot and infinitely-many repetitions scenarios. However, even in this case allowing for fast quantum control helps to increase the improvement factor. Furthermore, for frequency estimation with finite resource we show how a parallel scheme utilizing any fixed number of entangled qubits but no fast quantum control can be outperformed by a simple, easily implementable, sequential scheme which only requires entanglement between one sensing and one auxiliary qubit.Comment: 17 pages, 7 figures, 6 appendice
    • …
    corecore