359 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Pulsewidth modulations for the comprehensive capacitor voltage balance of n-level three-leg diode-clamped converters

    Get PDF
    In the previous literature, the introduction of the virtual-space-vector (VV) concept for the three-level, three-leg neutral-point-clamped converter has led to the definition of pulsewidth modulation (PWM) strategies, guaranteeing a dc-link capacitor voltage balance in every switching cycle under any type of load, with the only requirement being that the addition of the three phase currents equals zero. This paper presents the definition of the VVs for the general case of an n-level converter, suggests guidelines for designing VV PWM strategies, and provides the expressions of the leg duty-ratio waveforms corresponding to this family of PWMs for an easy implementation.Modulations defined upon these vectors enable the use of diode-clamped topologies with passive front-ends. The performance of these converters operated with the proposed PWMs is compared to the performance of alternative designs through analysis, simulation, and experiments.Postprint (published version

    OPTIMAL PULSE WIDTH MODULATION OF MULTILEVEL INVERTERS FOR MEDIUM VOLTAGE DRIVES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Capacitor Condition Monitoring for Modular Multilevel Converter Based on Charging Transient Voltage Analysis

    Get PDF

    High-performance motor drives

    Get PDF
    This article reviews the present state and trends in the development of key parts of controlled induction motor drive systems: converter topologies, modulation methods, as well as control and estimation techniques. Two- and multilevel voltage-source converters, current-source converters, and direct converters are described. The main part of all the produced electric energy is used to feed electric motors, and the conversion of electrical power into mechanical power involves motors ranges from less than 1 W up to several dozen megawatts

    Selective harmonic mitigation: limitations of classical control strategies and benefits of model predictive control

    Get PDF
    Selective harmonic mitigation pulsewidth modulation (SHMPWM) combined with model predictive control (MPC) is a promising approach for grid-connected power converters. SHMPWM can guarantee grid code compliance in steady state, e.g. grid harmonic injection, with a reduced output converter filter, while MPC improves dynamic response and allows grid code compliance in the event of grid transients. This paper presents a survey of the MPC strategies already published in the literature developed for their use with SHMPWM. The existing strategies fall into two categories: direct model predictive control with an implicit selective harmonic mitigation modulator, and direct model predictive control based on finite control set (FCS-MPC). One representative control strategy of each group is compared to each other and to the performance of classical proportional- integral (PI) controllers combined with SHMPWM. The goal is to identify the potential benefits of MPC for grid-connected power converters, and determine the main advantages and limitations of the two selected state-of-the-art control strategies. Their performance is assessed through Hardware-in-the-Loop (HIL) experimental results in terms of real-time implementation, harmonic content grid code compliance, dynamic response and performance under grid transients.This work is part of the projects PID2019-110956RB-I00 and TED2021- 132604B-I00, funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. It has also been partially supported by Ingeteam Power Technology and the Public University of Navarre

    Power quality improvement with a pulse width modulation control method in modular multilevel converters under varying nonlinear loads

    Get PDF
    UIDB/00667/2020 POCI-01-0145-FEDER-029803 (02/SAICT/2017) POCI-01-0145-FEDER-006961 (UID/EEA/50014/2019)In order to reach better results for pulse width modulation (PWM)-based methods, the reference waveforms known as control laws have to be achieved with good accuracy. In this paper, three control laws are created by considering the harmonic components of modular multilevel converter (MMC) state variables to suppress the circulating currents under nonlinear load variation. The first control law consists of only the harmonic components of the MMC's output currents and voltages. Then, the second-order harmonic of circulating currents is also involved with both upper and lower arm currents in order to attain the second control law. Since circulating current suppression is the main aim of this work, the third control law is formed by measuring all harmonic components of circulating currents which impact on the arm currents as well. By making a comparison between the switching signals generated by the three proposed control laws, it is verified that the second-order harmonic of circulating currents can increase the switching losses. In addition, the existence of all circulating current harmonics causes distributed switching patterns, which is not suitable for the switches' lifetime. Each upper and lower arm has changeable capacitors, named "equivalent submodule (SM) capacitors" in this paper. To further assess these capacitors, eliminating the harmonic components of circulating currents provides fluctuations with smaller magnitudes, as well as a smaller average value for the equivalent capacitors. Moreover, the second-order harmonic has a dominant role that leads to values higher than 3 F for equivalent capacitors. In comparison with the first and second control laws, the use of the third control-law-based method will result in very small circulating currents, since it is trying to control and eliminate all harmonic components of the circulating currents. This result leads to very small magnitudes for both the upper and lower arm currents, noticeably decreasing the total MMC losses. All simulation results are verified using MATLAB software in the SIMULINK environment.publishersversionpublishe

    Sequential Phase-Shifted Model Predictive Control for multicell power converters

    Full text link
    © 2017 IEEE. This paper proposes a sequential Phase-Shifted Model Predictive Control (PS-MPC) strategy for multicell power converters. The key novelty of this proposal lies in the way the predictive control strategy is formulated to fully exploit a phase-shifted pulse width modulation (PS-PWM) stage. Normally, when using a linear controller along with a standard PS-PWM stage, the modulator receives the same duty cycle for all the internal carriers. In contrast, by means of an appropriate choice of synchronized models for each carrier, the proposed predictive controller obtains independent optimal duty cycles for each carrier in a sequential manner. This allows one to formulate the optimal control problem to govern not only the output current but also the internal floating capacitor voltages, similarly to the finite-control-set MPC (FCS-MPC) case. As a result, the proposed sequential PS-MPC can attain a faster floating voltage balancing dynamic when compared to a standard PS-PWM implementation. Moreover, it generates a fixed-spectrum in the steady state with a constant commutation rate, which outperforms a standard FCS-MPC strategy. Simulation results of the proposed sequential PS-MPC strategy governing a single-phase four-level flying capacitor converter are presented to verify its dynamic and steady-state performance

    An Overview of Modelling Techniques and Control Strategies for Modular Multilevel Matrix Converters

    Get PDF
    The Modular Multilevel Matrix Converter is a relatively new power converter topology appropriate for high-power Alternating Current (AC) to AC purposes. Several publications in the literature have highlighted the converter capabilities such as modularity, control flexibility, the possibility to include redundancy, and power quality. Nevertheless, the topology and control of this converter are relatively complex to design and implement, considering that the converter has a large number of cells and floating capacitors. Therefore multilayer nested control systems are required to maintain the capacitor voltage of each cell regulated within an acceptable range. There are no other review papers where the modelling, control systems and applications of the Modular Multilevel Matrix Converter are discussed. Hence, this paper aims to facilitate further research by presenting the technology related to the Modular Multilevel Matrix Converter, focusing on a comprehensive revision of the modelling and control strategies.Agencia Nacional de Investigacion y Desarrollo (ANID) of Chile Fondecyt 11191163 Fondecyt 1180879 Fondecyt 11190852 Fondef ID19I10370 University of Costa Rica 322-B9242 University of Santiago Dicyt 091813D

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386
    corecore