4,550 research outputs found

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table

    ENORM: A Framework For Edge NOde Resource Management

    Get PDF
    Current computing techniques using the cloud as a centralised server will become untenable as billions of devices get connected to the Internet. This raises the need for fog computing, which leverages computing at the edge of the network on nodes, such as routers, base stations and switches, along with the cloud. However, to realise fog computing the challenge of managing edge nodes will need to be addressed. This paper is motivated to address the resource management challenge. We develop the first framework to manage edge nodes, namely the Edge NOde Resource Management (ENORM) framework. Mechanisms for provisioning and auto-scaling edge node resources are proposed. The feasibility of the framework is demonstrated on a PokeMon Go-like online game use-case. The benefits of using ENORM are observed by reduced application latency between 20% - 80% and reduced data transfer and communication frequency between the edge node and the cloud by up to 95\%. These results highlight the potential of fog computing for improving the quality of service and experience.Comment: 14 pages; accepted to IEEE Transactions on Services Computing on 12 September 201

    PRIORITIZED TASK SCHEDULING IN FOG COMPUTING

    Get PDF
    Cloud computing is an environment where virtual resources are shared among the many users over network. A user of Cloud services is billed according to pay-per-use model associated with this environment. To keep this bill to a minimum, efficient resource allocation is of great importance. To handle the many requests sent to Cloud by the clients, the tasks need to be processed according to the SLAs defined by the client. The increase in the usage of Cloud services on a daily basis has introduced delays in the transmission of requests. These delays can cause clients to wait for the response of the tasks beyond the deadline assigned. To overcome these concerns, Fog Computing is helpful as it is physically placed closer to the clients. This layer is placed between the client and the Cloud layer, and it reduces the delay in the transmission of the requests, processing and the response sent back to the client greatly. This paper discusses an algorithm which schedules tasks by calculating the priority of a task in the Fog layer. The tasks with higher priority are processed first so that the deadline is met, which makes the algorithm practical and efficient
    corecore