11,599 research outputs found

    Probabilistic Super Dense Coding

    Full text link
    We explore the possibility of performing super dense coding with non-maximally entangled states as a resource. Using this we find that one can send two classical bits in a probabilistic manner by sending a qubit. We generalize our scheme to higher dimensions and show that one can communicate 2log_2 d classical bits by sending a d-dimensional quantum state with a certain probability of success. The success probability in super dense coding is related to the success probability of distinguishing non-orthogonal states. The optimal average success probabilities are explicitly calculated. We consider the possibility of sending 2 log_2 d classical bits with a shared resource of a higher dimensional entangled state (D X D, D > d). It is found that more entanglement does not necessarily lead to higher success probability. This also answers the question as to why we need log_2 d ebits to send 2 log_2 d classical bits in a deterministic fashion.Comment: Latex file, no figures, 11 pages, Discussion changed in Section

    Optimal dense coding with arbitrary pure entangled states

    Get PDF
    We examine dense coding with an arbitrary pure entangled state sharing between the sender and the receiver. Upper bounds on the average success probability in approximate dense coding and on the probability of conclusive results in unambiguous dense coding are derived. We also construct the optimal protocol which saturates the upper bound in each case.Comment: 5 pages, journal versio

    Deterministic and Unambiguous Dense Coding

    Full text link
    Optimal dense coding using a partially-entangled pure state of Schmidt rank Dˉ\bar D and a noiseless quantum channel of dimension DD is studied both in the deterministic case where at most LdL_d messages can be transmitted with perfect fidelity, and in the unambiguous case where when the protocol succeeds (probability τx\tau_x) Bob knows for sure that Alice sent message xx, and when it fails (probability 1−τx1-\tau_x) he knows it has failed. Alice is allowed any single-shot (one use) encoding procedure, and Bob any single-shot measurement. For Dˉ≤D\bar D\leq D a bound is obtained for LdL_d in terms of the largest Schmidt coefficient of the entangled state, and is compared with published results by Mozes et al. For Dˉ>D\bar D > D it is shown that LdL_d is strictly less than D2D^2 unless Dˉ\bar D is an integer multiple of DD, in which case uniform (maximal) entanglement is not needed to achieve the optimal protocol. The unambiguous case is studied for Dˉ≤D\bar D \leq D, assuming τx>0\tau_x>0 for a set of DˉD\bar D D messages, and a bound is obtained for the average \lgl1/\tau\rgl. A bound on the average \lgl\tau\rgl requires an additional assumption of encoding by isometries (unitaries when Dˉ=D\bar D=D) that are orthogonal for different messages. Both bounds are saturated when τx\tau_x is a constant independent of xx, by a protocol based on one-shot entanglement concentration. For Dˉ>D\bar D > D it is shown that (at least) D2D^2 messages can be sent unambiguously. Whether unitary (isometric) encoding suffices for optimal protocols remains a major unanswered question, both for our work and for previous studies of dense coding using partially-entangled states, including noisy (mixed) states.Comment: Short new section VII added. Latex 23 pages, 1 PSTricks figure in tex

    Genuine Multiparty Quantum Entanglement Suppresses Multiport Classical Information Transmission

    Full text link
    We establish a universal complementarity relation between the capacity of classical information transmission by employing a multiparty quantum state as a multiport quantum channel, and the genuine multipartite entanglement of the quantum state. The classical information transfer is from a sender to several receivers by using the quantum dense coding protocol with the multiparty quantum state shared between the sender and the receivers. The relation holds for arbitrary pure or mixed quantum states of an arbitrary number of parties in arbitrary dimensions.Comment: 5 (+ epsilon) pages, 2 figures, Revtex4-1; v2: Theorem 3 extended to all states, other results unchange
    • …
    corecore