5,252 research outputs found

    PASS: a simple classifier system for data analysis

    Get PDF
    Let x be a vector of predictors and y a scalar response associated with it. Consider the regression problem of inferring the relantionship between predictors and response on the basis of a sample of observed pairs (x,y). This is a familiar problem for which a variety of methods are available. This paper describes a new method based on the classifier system approach to problem solving. Classifier systems provide a rich framework for learning and induction, and they have been suc:cessfully applied in the artificial intelligence literature for some time. The present method emiches the simplest classifier system architecture with some new heuristic and explores its potential in a purely inferential context. A prototype called PASS (Predictive Adaptative Sequential System) has been built to test these ideas empirically. Preliminary Monte Carlo experiments indicate that PASS is able to discover the structure imposed on the data in a wide array of cases

    Robust detail-preserving signal extraction

    Get PDF
    We discuss robust filtering procedures for signal extraction from noisy time series. Particular attention is paid to the preservation of relevant signal details like abrupt shifts. moving averages and running medians are widely used but have shortcomings when large spikes (outliers) or trends occur. Modifications like modified trimmed means and linear median hybrid filters combine advantages of both approaches, but they do not completely overcome the difficulties. Better solutions can be based on robust regression techniques, which even work in real time because of increased computational power and faster algorithms. Reviewing previous work we present filters for robust signal extraction and discuss their merits for preserving trends, abrupt shifts and local extremes as well as for the removal of outliers. --

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally

    Role of homeostasis in learning sparse representations

    Full text link
    Neurons in the input layer of primary visual cortex in primates develop edge-like receptive fields. One approach to understanding the emergence of this response is to state that neural activity has to efficiently represent sensory data with respect to the statistics of natural scenes. Furthermore, it is believed that such an efficient coding is achieved using a competition across neurons so as to generate a sparse representation, that is, where a relatively small number of neurons are simultaneously active. Indeed, different models of sparse coding, coupled with Hebbian learning and homeostasis, have been proposed that successfully match the observed emergent response. However, the specific role of homeostasis in learning such sparse representations is still largely unknown. By quantitatively assessing the efficiency of the neural representation during learning, we derive a cooperative homeostasis mechanism that optimally tunes the competition between neurons within the sparse coding algorithm. We apply this homeostasis while learning small patches taken from natural images and compare its efficiency with state-of-the-art algorithms. Results show that while different sparse coding algorithms give similar coding results, the homeostasis provides an optimal balance for the representation of natural images within the population of neurons. Competition in sparse coding is optimized when it is fair. By contributing to optimizing statistical competition across neurons, homeostasis is crucial in providing a more efficient solution to the emergence of independent components
    corecore