17 research outputs found

    Radio Astronomy

    Get PDF
    Contains table of contents and reports on seven research projects.National Science Foundation (Grant AST 86-17172)National Aeronautics and Space AdministrationJet Propulsion LaboratoryNASA/Goddard Space Flight Center (Grant NAG5-10)SM Systems and Research, Inc.U.S. Navy Office of Naval Research (Contract N00014-86-C-2114)Center for Advanced Television StudiesNASA/Goddard Space Flight Center (Grant NAG5-537

    Postfiltering Using Multichannel Spectral Estimation in Multispeaker Environments

    Get PDF
    This paper investigates the problem of enhancing a single desired speech source from a mixture of signals in multispeaker environments. A beamformer structure is proposed which combines a fixed beamformer with postfiltering. In the first stage, the fixed multiobjective optimal beamformer is designed to spatially extract the desired source by suppressing all other undesired sources. In the second stage, a multichannel power spectral estimator is proposed and incorporated in the postfilter, thus enabling further suppression capability. The combined scheme exploits both spatial and spectral characteristics of the signals. Two new multichannel spectral estimation methods are proposed for the postfiltering using, respectively, inner product and joint diagonalization. Evaluations using recordings from a real-room environment show that the proposed beamformer offers a good interference suppression level whilst maintaining a low-distortion level of the desired source

    Residual feedback suppression with extended model-based postfilters

    Get PDF
    When designing closed-loop electro-acoustic systems, which can commonly be found in hearing aids or public address systems, the most challenging task is canceling and/or suppressing the feedback caused by the acoustic coupling of the transducers of such systems. In many applications, feedback cancelation based on adaptive filters is used for this purpose. However, due to computational complexity such a feedback canceler is often limited in the length of the filter’s impulse response. Consequently, a residual feedback, which is still audible and may lead to system instability, remains in most cases. In this work, we present enhancements for model-based postfilters based on a priori knowledge of the feedback path which can be used cooperatively with the adaptive filter-based feedback cancelation system to suppress residual feedback and improve the overall feedback reduction capability. For this, we adapted an existing reverberation model such that our model additionally considers the presence and the performance of the adaptive filter. We tested the effectiveness of our approach by means of both objective and subjective evaluations

    Multiple Description Quantization via Gram-Schmidt Orthogonalization

    Full text link
    The multiple description (MD) problem has received considerable attention as a model of information transmission over unreliable channels. A general framework for designing efficient multiple description quantization schemes is proposed in this paper. We provide a systematic treatment of the El Gamal-Cover (EGC) achievable MD rate-distortion region, and show that any point in the EGC region can be achieved via a successive quantization scheme along with quantization splitting. For the quadratic Gaussian case, the proposed scheme has an intrinsic connection with the Gram-Schmidt orthogonalization, which implies that the whole Gaussian MD rate-distortion region is achievable with a sequential dithered lattice-based quantization scheme as the dimension of the (optimal) lattice quantizers becomes large. Moreover, this scheme is shown to be universal for all i.i.d. smooth sources with performance no worse than that for an i.i.d. Gaussian source with the same variance and asymptotically optimal at high resolution. A class of low-complexity MD scalar quantizers in the proposed general framework also is constructed and is illustrated geometrically; the performance is analyzed in the high resolution regime, which exhibits a noticeable improvement over the existing MD scalar quantization schemes.Comment: 48 pages; submitted to IEEE Transactions on Information Theor

    Speech enhancement in binaural hearing protection devices

    Get PDF
    The capability of people to operate safely and effective under extreme noise conditions is dependent on their accesses to adequate voice communication while using hearing protection. This thesis develops speech enhancement algorithms that can be implemented in binaural hearing protection devices to improve communication and situation awareness in the workplace. The developed algorithms which emphasize low computational complexity, come with the capability to suppress noise while enhancing speech
    corecore