717 research outputs found

    Green Communication via Power-optimized HARQ Protocols

    Get PDF
    Recently, efficient use of energy has become an essential research topic for green communication. This paper studies the effect of optimal power controllers on the performance of delay-sensitive communication setups utilizing hybrid automatic repeat request (HARQ). The results are obtained for repetition time diversity (RTD) and incremental redundancy (INR) HARQ protocols. In all cases, the optimal power allocation, minimizing the outage-limited average transmission power, is obtained under both continuous and bursting communication models. Also, we investigate the system throughput in different conditions. The results indicate that the power efficiency is increased substantially, if adaptive power allocation is utilized. For instance, assume Rayleigh-fading channel, a maximum of two (re)transmission rounds with rates {1,12}\{1,\frac{1}{2}\} nats-per-channel-use and an outage probability constraint 10−3{10}^{-3}. Then, compared to uniform power allocation, optimal power allocation in RTD reduces the average power by 9 and 11 dB in the bursting and continuous communication models, respectively. In INR, these values are obtained to be 8 and 9 dB, respectively.Comment: Accepted for publication on IEEE Transactions on Vehicular Technolog

    On the Performance of the Relay-ARQ Networks

    Full text link
    This paper investigates the performance of relay networks in the presence of hybrid automatic repeat request (ARQ) feedback and adaptive power allocation. The throughput and the outage probability of different hybrid ARQ protocols are studied for independent and spatially-correlated fading channels. The results are obtained for the cases where there is a sum power constraint on the source and the relay or when each of the source and the relay are power-limited individually. With adaptive power allocation, the results demonstrate the efficiency of relay-ARQ techniques in different conditions.Comment: Accepted for publication in IEEE Trans. Veh. Technol. 201

    A random access MAC protocol for MPR satellite networks

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaRandom access approaches for Low Earth Orbit (LEO) satellite networks are usually incompatible with the Quality of Service (QoS) requirements of multimedia tra c, especially when hand-held devices must operate with very low power. Cross-Layered optimization architectures, combined with Multipacket Reception (MPR)schemes are a good choice to enhance the overall performance of a wireless system. Hybrid Network-assisted Diversity Multiple Access (H-NDMA) protocol, exhibits high energy e ciency, with MPR capability, but its use with satellites is limited by the high round trip time. This protocol was adapted to satellites, in Satellite-NDMA, but it required a pre-reservation mechanism that introduces a signi cant delay. This dissertation proposes a random access protocol that uses H-NDMA, for Low Earth Orbit (LEO) satellite networks, named Satellite Random-NDMA (SR-NDMA). The protocol addresses the problem inherent to satellite networks (large round trip time and signi cant energy consumption) de ning a hybrid approach with an initial random access plus possible additional scheduled retransmissions. An MPR receiver combines the multiple copies received, gradually reducing the error rate. Analytical performance models are proposed for the throughput, delay, jitter and energy e ciency considering nite queues at the terminals. It is also addressed the energy e ciency optimization, where the system parameters are calculated to guarantee the QoS requirements. The proposed system's performance is evaluated for a Single-Carrier with Frequency Domain Equalization (SC-FDE) receiver. Results show that the proposed system is energy e cient and can provide enough QoS to support services such as video telephony

    Backhaul-Aware Caching Placement for Wireless Networks

    Full text link
    As the capacity demand of mobile applications keeps increasing, the backhaul network is becoming a bottleneck to support high quality of experience (QoE) in next-generation wireless networks. Content caching at base stations (BSs) is a promising approach to alleviate the backhaul burden and reduce user-perceived latency. In this paper, we consider a wireless caching network where all the BSs are connected to a central controller via backhaul links. In such a network, users can obtain the required data from candidate BSs if the data are pre-cached. Otherwise, the user data need to be first retrieved from the central controller to local BSs, which introduces extra delay over the backhaul. In order to reduce the download delay, the caching placement strategy needs to be optimized. We formulate such a design problem as the minimization of the average download delay over user requests, subject to the caching capacity constraint of each BS. Different from existing works, our model takes BS cooperation in the radio access into consideration and is fully aware of the propagation delay on the backhaul links. The design problem is a mixed integer programming problem and is highly complicated, and thus we relax the problem and propose a low-complexity algorithm. Simulation results will show that the proposed algorithm can effectively determine the near-optimal caching placement and provide significant performance gains over conventional caching placement strategies.Comment: 6 pages, 3 figures, accepted to IEEE Globecom, San Diego, CA, Dec. 201

    QoS in LEO satellite networks with multipacket reception

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaLow Earth Orbit (LEO) satellite networks can improve terrestrial wireless networks to allow global broadband services for Mobile Terminals (MT), regardless of the users' location. In this context, hybrid telecommunication systems combining satellites with Long Term Evolution (LTE) networks, like the LightSquared technology, are intended to provide ubiquitous high-speed services. This dissertation analyses the performance of a random access protocol that uses Hybrid Network-assisted Diversity Multiple Access (H-NDMA), for a LEO satellite system network, named by Satellite Random NDMA (SR-NDMA). The protocol also considers a Single Carrier-Frequency Domain Equalization (SC-FDE) scheme for the uplink transmission and a Multipacket Reception (MPR) receiver. In this scenario, the transmission of data packets between MTs and the Base Station (BS) is made through random access and schedule access slots, organized into super-frames with the duration of a Round Trip Time (RTT). A SR-NDMA simulator is implemented to measure the system performance in matters of throughput, energy consumption, system delay and also the protocol capacity to meet Quality of Service (QoS) requirements. A set of simulations tests were made with a random Poisson process tra c generation to validate the analytical model. The capacity to ful l the QoS requirements of a real-time tra c class was also tested.FCT/MEC: MPSat - PTDC/EEA-TEL/099074/2008, OPPORTUNISTIC CR - PTDC/EEA-TEL/115981/2009, Femtocells - PTDC/EEA-TEL/120666/2010 e ADIN - PTDC/EEI-TEL/2990/201

    On Noisy ARQ in Block-Fading Channels

    Get PDF
    Assuming noisy feedback channels, this paper investigates the data transmission efficiency and robustness of different automatic repeat request (ARQ) schemes using adaptive power allocation. Considering different block-fading channel assumptions, the long-term throughput, the delay-limited throughput, the outage probability and the feedback load of different ARQ protocols are studied. A closed-form expression for the power-limited throughput optimization problem is obtained which is valid for different ARQ protocols and feedback channel conditions. Furthermore, the paper presents numerical investigations on the robustness of different ARQ protocols to feedback errors. It is shown that many analytical assertions about the ARQ protocols are valid both when the channel remains fixed during all retransmission rounds and when it changes in each round (in)dependently. As demonstrated, optimal power allocation is crucial for the performance of noisy ARQ schemes when the goal is to minimize the outage probability
    • …
    corecore