3,681 research outputs found

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Decision Support for Smart Grid Planning and Operation Considering Reliability

    Get PDF
    [ES] Esta tesis aporta contribuciones a los temas de los sistemas de energía y la movilidad eléctrica. Por lo tanto, se proponen soluciones innovadoras para la planificación de la red de distribución radial tradicional sin o con pocas unidades de recursos energéticos distribuidos, y para la planificación, operación, reconfiguración, y gestión de recursos energéticos en redes de distribución en media tensión considerando una alta penetración de los recursos energéticos distribuidos en el contexto de las redes inteligentes. Las preocupaciones sobre la disponibilidad de combustibles fósiles y el aumento de los efectos climático causados por su uso generalizado en la generación de electricidad han llevado a varias políticas e incentivos para atenuar estos problemas. Estas medidas contribuyeron a inversiones considerables en fuentes de energía renovables y motivaron muchas iniciativas de redes inteligentes. Aunque el panorama futuro de los sistemas eléctricos modernos parece muy prometedor, la integración a gran escala de fuentes de energía renovables de naturaleza intermitente, como la eólica y la fotovoltaica, plantea nuevos desafíos y limitaciones en la industria eléctrica actual. Hoy en día, el diseño de la red de distribución no está correctamente preparado para alojar una gran cantidad de fuentes de energía renovables distribuidas. Por lo tanto, los operadores del sistema de distribución reconocen la necesidad de cambiar el diseño de la red mediante la planificación y el refuerzo. A medida que aumenta la penetración de las fuentes de energía renovable, un agregador de energía puede proporcionar una generación y demanda altamente flexibles según lo requiere el paradigma de red inteligente. Además, esta entidad puede permitir lograr una alta integración de la oferta de energía renovable y aumentar el valor para los pequeños productores y consumidores que no pueden negociar directamente en el mercado mayorista. Sin embargo, la entidad agregadora de energía necesita herramientas adecuadas de apoyo a la decisión para superar los desafíos complejos y hacer frente a un gran número de recursos energéticos. Por lo tanto, la gestión de recursos energéticos es crucial para que la entidad agregadora de energía reduzca los costos de operación, aumente de los beneficios, reduzca la huella de carbono y mejore la estabilidad del sistema. En la perspectiva mundial actual, muchas personas se están mudando a las ciudades en busca de una mejor calidad de vida, contribuyendo de esta manera a la continua expansión de las áreas urbanas. En consecuencia, el sector de transportes está jugando un papel crítico en las emisiones de dióxido de carbono. Teniendo en cuenta esto, muchas ventajas medioambientales y económicas pueden ser obtenidas del cambio de los motores de combustión interna a los vehículos eléctricos. Sin embargo, este cambio contribuirá a una carga en la red de distribución, dando lugar a la posibilidad de congestión de la red. Por lo tanto, para facilitar la integración de la carga de los vehículos eléctricos en la red de distribución, un modelo de predicción del comportamiento del usuario de un vehículo eléctrico pode ser una herramienta muy importante. Además, el paradigma de la red inteligente está desafiando la estructura de control y operación convencional diseñado para redes de distribución pasivas. De este modo, la reconfiguración de la red de distribución será una estrategia esencial y significativa para el operador del sistema de distribución. En el estado del arte actual se identificó una falta de modelos, estrategias y herramientas de apoyo a la toma de decisiones adecuadas para los dominios de problemas de planificación, operación y gestión de recursos energéticos de redes de distribución en media tensión con una alta penetración de fuentes de energía distribuidas. Por lo tanto, surgen varios desafíos de investigación que llevan a la necesidad de desarrollar modelos nuevos e innovadores que aborden: a) el impacto de las fuentes de energía renovable y la variabilidad de la demanda en la planificación de la expansión a largo plazo, b) el problema de la gestión de los recursos energéticos a gran escala, teniendo en cuenta la demanda, las fuentes de energía renovables, los vehículos eléctricos y la variabilidad de los precios del mercado, c) el análisis de impacto de los precios de carga dinámicos de los vehículos eléctricos en la operación de la red de distribución y en el comportamiento del usuario del vehículo eléctrico. Además, en el contexto de la red de distribución de media tensión radial tradicional, también se verificó la necesidad de modelos innovadores para mejorar la confiabilidad a través de la identificación de nuevas inversiones en los componentes de la red. Por lo tanto, esta tesis propone soluciones innovadoras para hacer frente a todos estos vacíos y problemas. Para ese propósito, las contribuciones de la tesis, resultan en un innovador sistema de apoyo a la decisión llamado Advanced Decision Support Tool for Smart Grid Planning and Operation (SupporGrid). El SupporGrid se compone de un conjunto de modelos diversificados que juntos contribuyen a manejar la complejidad de la planificación tradicional de las redes de distribución radial (PlanTGrid), y para la planificación (PlanSGrid), operación (OperSGrid), y los problemas de gestión de recursos energéticos (ERMGrid) en redes de distribución de media tensión en el paradigma de red inteligente. PlanTGrid incluye un modelo de planificación de expansión para redes de distribución radial tradicionales para identificar la posibilidad de nuevas inversiones al costo mínimo. La planificación de la expansión a largo plazo de las redes de distribución en un contexto de red inteligente con una alta penetración de fuentes de energía renovables distribuidas y que trata las fuentes de incertidumbre se resuelve mediante el uso PlanSGrid. OperSGrid contiene una herramienta de simulación de viajes de los usuarios de los vehículos eléctricos funcionando en conjunto con un modelo de operación y reconfiguración que utiliza descomposición de Benders y precios marginales para comprender el impacto del precio de carga de energía dinámica en ambos lados: la red de distribución y el usuario de vehículo eléctrico. Para hacer frente a la gestión de recursos energéticos a gran escala con problemas de respuesta a la demanda y sistemas de almacenamiento de energía, así como con la variabilidad de la demanda, las fuentes de energía renovable, los vehículos eléctricos y el precio de mercado, ERMGrid incluye un modelo estocástico de dos etapas. Las metodologías desarrolladas para el sistema de soporte de decisiones se han probado y validado en escenarios realistas. Los resultados prometedores logrados en condiciones realistas respaldan la hipótesis de que las metodologías son adecuadas e innovadoras para la planificación de la red de distribución radial tradicional, y para la planificación, operación, reconfiguración y gestión de recursos energéticos a largo plazo de la red de distribución considerando alta penetración de recursos energéticos distribuidos y de vehículos eléctricos en el contexto de red inteligente. Los resultados prometedores logrados en condiciones realistas respaldan la hipótesis de que las metodologías son adecuadas e innovadoras para la planificación de la red de distribución radial tradicional, y para la planificación, operación, reconfiguración y gestión de recursos energéticos a largo plazo de la red de distribución considerando la alta distribución de recursos energéticos y la penetración de vehículos eléctricos. De hecho, este sistema de apoyo a la decisión mejorará el funcionamiento de las redes de distribución de media tensión, permitiendo ahorros para las partes interesadas

    Optimal scheduling of smart microgrids considering electric vehicle battery swapping stations

    Get PDF
    Smart microgrids belong to a set of networks that operate independently. These networks have technologies such as electric vehicle battery swapping stations that aim to economic welfare with own resources of smart microgrids. These resources should support other services, for example, the supply of energy at peak hours. This study addresses the formulation of a decision matrix based on operating conditions of electric vehicles and examines economically viable alternatives for a battery swapping station. The decision matrix is implemented to manage the swapping, charging, and discharging of electric vehicles. Furthermore, this study integrates a smart microgrid model to assess the operational strategies of the aggregator, which can act like a prosumer by managing both electric vehicle battery swapping stations and energy storage systems. The smart microgrid model proposed includes elements used for demand response and generators with renewable energies. This model investigates the effect of the wholesale, local and electric-vehicle markets. Additionally, the model includes uncertainty issues related to the planning for the infrastructure of the electric vehicle battery swapping station, variability of electricity prices, weather conditions, and load forecasting. This article also analyzes how both the user and the providers maximize their economic benefits with the hybrid optimization algorithm called variable neighborhood search - differential evolutionary particle swarm optimization. The strategy to organize the infrastructure of these charging stations reaches a reduction of 72% in the overall cost. This reduction percentage is obtained calculating the random solution with respect to the suboptimal solution

    Uncertainty Analysis of the Adequacy Assessment Model of a Distributed Generation System

    Full text link
    Due to the inherent aleatory uncertainties in renewable generators, the reliability/adequacy assessments of distributed generation (DG) systems have been particularly focused on the probabilistic modeling of random behaviors, given sufficient informative data. However, another type of uncertainty (epistemic uncertainty) must be accounted for in the modeling, due to incomplete knowledge of the phenomena and imprecise evaluation of the related characteristic parameters. In circumstances of few informative data, this type of uncertainty calls for alternative methods of representation, propagation, analysis and interpretation. In this study, we make a first attempt to identify, model, and jointly propagate aleatory and epistemic uncertainties in the context of DG systems modeling for adequacy assessment. Probability and possibility distributions are used to model the aleatory and epistemic uncertainties, respectively. Evidence theory is used to incorporate the two uncertainties under a single framework. Based on the plausibility and belief functions of evidence theory, the hybrid propagation approach is introduced. A demonstration is given on a DG system adapted from the IEEE 34 nodes distribution test feeder. Compared to the pure probabilistic approach, it is shown that the hybrid propagation is capable of explicitly expressing the imprecision in the knowledge on the DG parameters into the final adequacy values assessed. It also effectively captures the growth of uncertainties with higher DG penetration levels

    Holistic approach for microgrid planning and operation for e-mobility infrastructure under consideration of multi-type uncertainties

    Get PDF
    Integrating renewable energys ources in sectors such as electricity, heat, and transportation must be structured in an economic, technological, and emission- efficient manner to address global environmental issues.Microgrids appear to be the solution for large-scale renewable energy integration in these sectors.The microgrid components must be optimally planned and operated to prevent high costs, technical issues, and emissions. Existing approaches for optimal microgrid planning and operation in the literature do not include a solution for e-mobility infrastructure. As a consequence, a compact e-mobility infrastructure metho- dology is provided.The development of e-mobility infrastructure has as sociated uncertainties (short and long-term). As a result, a new stochastic method re- ferred to as IGDM-DRO is proposed in this dissertation.The proposed method provides a risk-averse strategy for microgrid planning and operation by including long-term and short-term uncertainty related to e-mobility.The multi-cut ben- der decomposition is applied for IGDM-DRO to prevent the suggested method’s intractability.Finally, the deterministic and stochastic methodologies are com bined in an ovelholistic approach for microgrid design and operation in terms of cost and robustness.The proposed method ist ested on a new settlement area in Magdeburg, Germany, under three different EV development scenarios (nega- tive, trend, andpositive).The share for the number of electric vehicles reached 31 percent of conventional vehicles by the end of the planned horizon. As a result, the microgrid’s overall cost has been increased by 2.3 to 2.9 percent per electric vehicle.Three public electric vehicle charging stations will be required in the investigated settlement are a intrend 2031.The investigated settlement area will require a total cost of 127,029 € in the trend scenario.To achieve full robustness against long-term uncertainties,the cost of the microgrid needs to be increased by 80 percent
    corecore