4,033 research outputs found

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Swarm Intelligence Based Multi-phase OPF For Peak Power Loss Reduction In A Smart Grid

    Full text link
    Recently there has been increasing interest in improving smart grids efficiency using computational intelligence. A key challenge in future smart grid is designing Optimal Power Flow tool to solve important planning problems including optimal DG capacities. Although, a number of OPF tools exists for balanced networks there is a lack of research for unbalanced multi-phase distribution networks. In this paper, a new OPF technique has been proposed for the DG capacity planning of a smart grid. During the formulation of the proposed algorithm, multi-phase power distribution system is considered which has unbalanced loadings, voltage control and reactive power compensation devices. The proposed algorithm is built upon a co-simulation framework that optimizes the objective by adapting a constriction factor Particle Swarm optimization. The proposed multi-phase OPF technique is validated using IEEE 8500-node benchmark distribution system.Comment: IEEE PES GM 2014, Washington DC, US

    Improving Grid Hosting Capacity and Inertia Response with High Penetration of Renewable Generation

    Get PDF
    To achieve a more sustainable supply of electricity, utilizing renewable energy resources is a promising solution. However, the inclusion of intermittent renewable energy resources in electric power systems, if not appropriately managed and controlled, will raise a new set of technical challenges in both voltage and frequency control and jeopardizes the reliability and stability of the power system, as one of the most critical infrastructures in the today’s world. This dissertation aims to answer how to achieve high penetration of renewable generations in the entire power system without jeopardizing its security and reliability. First, we tackle the data insufficiency in testing new methods and concepts in renewable generation integration and develop a toolkit to generate any number of synthetic power grids feathering the same properties of real power grids. Next, we focus on small-scale PV systems as the most growing renewable generation in distribution networks and develop a detailed impact assessment framework to examine its impacts on the system and provide installation scheme recommendations to improve the hosting capacity of PV systems in the distribution networks. Following, we examine smart homes with rooftop PV systems and propose a new demand side management algorithm to make the best use of distributed renewable energy. Finally, the findings in the aforementioned three parts have been incorporated to solve the challenge of inertia response and hosting capacity of renewables in transmission network

    Optimization of Battery Energy Storage to Improve Power System Oscillation Damping

    Full text link
    A placement problem for multiple Battery Energy Storage System (BESS) units is formulated towards power system transient voltage stability enhancement in this paper. The problem is solved by the Cross-Entropy (CE) optimization method. A simulation-based approach is adopted to incorporate higher-order dynamics and nonlinearities of generators and loads. The objective is to maximize the voltage stability index, which is setup based on certain grid-codes. Formulations of the optimization problem are then discussed. Finally, the proposed approach is implemented in MATLAB/DIgSILENT and tested on the New England 39-Bus system. Results indicate that installing BESS units at the optimized location can alleviate transient voltage instability issue compared with the original system with no BESS. The CE placement algorithm is also compared with the classic PSO (Particle Swarm Optimization) method, and its superiority is demonstrated in terms of a faster convergence rate with matched solution qualities.Comment: This paper has been accepted by IEEE Transactions on Sustainable Energy and now still in online-publication phase, IEEE Transactions on Sustainable Energy. 201

    Control strategy for direct voltage and frequency stabilityenhancement in HVAC/HVDC grids

    Get PDF
    Direct voltage fluctuations due to the presence of relatively large DC reactors (as an essen-tial part of HVDC breakers), lack of inertia, and unwanted frequency fluctuations in theAC side of HVDC grids, have major consequences on the stability of HVAC/HVDC grids.The use of the DC Power System Stabilizer (DC-PSS) can damp and eliminate voltageoscillations caused by the presence of the DC reactors. However, DC-PSS cannot addressthe issues of inertia and unwanted frequency fluctuations. A method to improve inertiais proposed here that can operate well with the droop controller, and DC-PSS does notinterfere with power-sharing and does not interact with any of these elements. Since thepresence of a droop controller in HVAC/HVDC grids associates with power and directvoltage, the method proposed here can improve direct voltage fluctuations by eliminatingsevere power peaks. Moreover, this method does not change the voltage level of the entiresystem, so there is no need to change the set-points of controllers. In addition, all param-eters of the controllers are tuned by an intelligent algorithm, and the Participation factor(PF) scheme is used to find the proper placement of the proposed controller
    corecore