5,925 research outputs found

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Robust H∞ control for networked systems with random packet losses

    Get PDF
    Copyright [2007] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the robust Hinfin control problem Is considered for a class of networked systems with random communication packet losses. Because of the limited bandwidth of the channels, such random packet losses could occur, simultaneously, in the communication channels from the sensor to the controller and from the controller to the actuator. The random packet loss is assumed to obey the Bernoulli random binary distribution, and the parameter uncertainties are norm-bounded and enter into both the system and output matrices. In the presence of random packet losses, an observer-based feedback controller is designed to robustly exponentially stabilize the networked system in the sense of mean square and also achieve the prescribed Hinfin disturbance-rejection-attenuation level. Both the stability-analysis and controller-synthesis problems are thoroughly investigated. It is shown that the controller-design problem under consideration is solvable if certain linear matrix inequalities (LMIs) are feasible. A simulation example is exploited to demonstrate the effectiveness of the proposed LMI approach

    Networked PID control design : a pseudo-probabilistic robust approach

    Get PDF
    Networked Control Systems (NCS) are feedback/feed-forward control systems where control components (sensors, actuators and controllers) are distributed across a common communication network. In NCS, there exist network-induced random delays in each channel. This paper proposes a method to compensate the effects of these delays for the design and tuning of PID controllers. The control design is formulated as a constrained optimization problem and the controller stability and robustness criteria are incorporated as design constraints. The design is based on a polytopic description of the system using a Poisson pdf distribution of the delay. Simulation results are presented to demonstrate the performance of the proposed method
    • 

    corecore