126 research outputs found

    Optimal Pebbling in Products of Graphs

    Full text link
    We prove a generalization of Graham's Conjecture for optimal pebbling with arbitrary sets of target distributions. We provide bounds on optimal pebbling numbers of products of complete graphs and explicitly find optimal tt-pebbling numbers for specific such products. We obtain bounds on optimal pebbling numbers of powers of the cycle C5C_5. Finally, we present explicit distributions which provide asymptotic bounds on optimal pebbling numbers of hypercubes.Comment: 28 pages, 1 figur

    Critical Pebbling Numbers of Graphs

    Full text link
    We define three new pebbling parameters of a connected graph GG, the rr-, gg-, and uu-critical pebbling numbers. Together with the pebbling number, the optimal pebbling number, the number of vertices nn and the diameter dd of the graph, this yields 7 graph parameters. We determine the relationships between these parameters. We investigate properties of the rr-critical pebbling number, and distinguish between greedy graphs, thrifty graphs, and graphs for which the rr-critical pebbling number is 2d2^d.Comment: 26 page

    Modified Linear Programming and Class 0 Bounds for Graph Pebbling

    Full text link
    Given a configuration of pebbles on the vertices of a connected graph GG, a \emph{pebbling move} removes two pebbles from some vertex and places one pebble on an adjacent vertex. The \emph{pebbling number} of a graph GG is the smallest integer kk such that for each vertex vv and each configuration of kk pebbles on GG there is a sequence of pebbling moves that places at least one pebble on vv. First, we improve on results of Hurlbert, who introduced a linear optimization technique for graph pebbling. In particular, we use a different set of weight functions, based on graphs more general than trees. We apply this new idea to some graphs from Hurlbert's paper to give improved bounds on their pebbling numbers. Second, we investigate the structure of Class 0 graphs with few edges. We show that every nn-vertex Class 0 graph has at least 53n−113\frac53n - \frac{11}3 edges. This disproves a conjecture of Blasiak et al. For diameter 2 graphs, we strengthen this lower bound to 2n−52n - 5, which is best possible. Further, we characterize the graphs where the bound holds with equality and extend the argument to obtain an identical bound for diameter 2 graphs with no cut-vertex.Comment: 19 pages, 8 figure

    Constructions for the optimal pebbling of grids

    Get PDF
    In [C. Xue, C. Yerger: Optimal Pebbling on Grids, Graphs and Combinatorics] the authors conjecture that if every vertex of an infinite square grid is reachable from a pebble distribution, then the covering ratio of this distribution is at most 3.253.25. First we present such a distribution with covering ratio 3.53.5, disproving the conjecture. The authors in the above paper also claim to prove that the covering ratio of any pebble distribution is at most 6.756.75. The proof contains some errors. We present a few interesting pebble distributions that this proof does not seem to cover and highlight some other difficulties of this topic
    • …
    corecore