50,215 research outputs found

    Motion Planning and Controls with Safety and Temporal Constraints

    Get PDF
    Motion planning, or trajectory planning, commonly refers to a process of converting high-level task specifications into low-level control commands that can be executed on the system of interest. For different applications, the system will be different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a humanoid robot, or an industrial robotic arm. As human machine interaction is essential in many of these systems, safety is fundamental and crucial. Many of the applications also involve performing a task in an optimal manner within a given time constraint. Therefore, in this thesis, we focus on two aspects of the motion planning problem. One is the verification and synthesis of the safe controls for autonomous ground and air vehicles in collision avoidance scenarios. The other part focuses on the high-level planning for the autonomous vehicles with the timed temporal constraints. In the first aspect of our work, we first propose a verification method to prove the safety and robustness of a path planner and the path following controls based on reachable sets. We demonstrate the method on quadrotor and automobile applications. Secondly, we propose a reachable set based collision avoidance algorithm for UAVs. Instead of the traditional approaches of collision avoidance between trajectories, we propose a collision avoidance scheme based on reachable sets and tubes. We then formulate the problem as a convex optimization problem seeking control set design for the aircraft to avoid collision. We apply our approach to collision avoidance scenarios of quadrotors and fixed-wing aircraft. In the second aspect of our work, we address the high level planning problems with timed temporal logic constraints. Firstly, we present an optimization based method for path planning of a mobile robot subject to timed temporal constraints, in a dynamic environment. Temporal logic (TL) can address very complex task specifications such as safety, coverage, motion sequencing etc. We use metric temporal logic (MTL) to encode the task specifications with timing constraints. We then translate the MTL formulae into mixed integer linear constraints and solve the associated optimization problem using a mixed integer linear program solver. We have applied our approach on several case studies in complex dynamical environments subjected to timed temporal specifications. Secondly, we also present a timed automaton based method for planning under the given timed temporal logic specifications. We use metric interval temporal logic (MITL), a member of the MTL family, to represent the task specification, and provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find an optimal motion (or path) sequence for the robot to complete the task

    Timed Automata Approach for Motion Planning Using Metric Interval Temporal Logic

    Full text link
    In this paper, we consider the robot motion (or task) planning problem under some given time bounded high level specifications. We use metric interval temporal logic (MITL), a member of the temporal logic family, to represent the task specification and then we provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find a feasible motion (or path) sequence for the robot to complete the task.Comment: Full Version for ECC 201

    Technical Report: A Receding Horizon Algorithm for Informative Path Planning with Temporal Logic Constraints

    Full text link
    This technical report is an extended version of the paper 'A Receding Horizon Algorithm for Informative Path Planning with Temporal Logic Constraints' accepted to the 2013 IEEE International Conference on Robotics and Automation (ICRA). This paper considers the problem of finding the most informative path for a sensing robot under temporal logic constraints, a richer set of constraints than have previously been considered in information gathering. An algorithm for informative path planning is presented that leverages tools from information theory and formal control synthesis, and is proven to give a path that satisfies the given temporal logic constraints. The algorithm uses a receding horizon approach in order to provide a reactive, on-line solution while mitigating computational complexity. Statistics compiled from multiple simulation studies indicate that this algorithm performs better than a baseline exhaustive search approach.Comment: Extended version of paper accepted to 2013 IEEE International Conference on Robotics and Automation (ICRA

    Optimal path planning for surveillance with temporal-logic constraints

    Full text link
    In this paper we present a method for automatically generating optimal robot paths satisfying high-level mission specifications. The motion of the robot in the environment is modeled as a weighted transition system. The mission is specified by an arbitrary linear temporal-logic (LTL) formula over propositions satisfied at the regions of a partitioned environment. The mission specification contains an optimizing proposition, which must be repeatedly satisfied. The cost function that we seek to minimize is the maximum time between satisfying instances of the optimizing proposition. For every environment model, and for every formula, our method computes a robot path that minimizes the cost function. The problem is motivated by applications in robotic monitoring and data-gathering. In this setting, the optimizing proposition is satisfied at all locations where data can be uploaded, and the LTL formula specifies a complex data-collection mission. Our method utilizes Büchi automata to produce an automaton (which can be thought of as a graph) whose runs satisfy the temporal-logic specification. We then present a graph algorithm that computes a run corresponding to the optimal robot path. We present an implementation for a robot performing data collection in a road-network platform.This material is based upon work supported in part by ONR-MURI (award N00014-09-1-1051), ARO (award W911NF-09-1-0088), and Masaryk University (grant numbers LH11065 and GD102/09/H042), and other funding sources (AFOSR YIP FA9550-09-1-0209, NSF CNS-1035588, NSF CNS-0834260). (N00014-09-1-1051 - ONR-MURI; W911NF-09-1-0088 - ARO; LH11065 - Masaryk University; GD102/09/H042 - Masaryk University; FA9550-09-1-0209 - AFOSR YIP; CNS-1035588 - NSF; CNS-0834260 - NSF
    • …
    corecore