13,671 research outputs found

    Dense Packings of Congruent Circles in Rectangles with a Variable Aspect Ratio

    Full text link
    We use computational experiments to find the rectangles of minimum area into which a given number n of non-overlapping congruent circles can be packed. No assumption is made on the shape of the rectangles. Most of the packings found have the usual regular square or hexagonal pattern. However, for 1495 values of n in the tested range n =< 5000, specifically, for n = 49, 61, 79, 97, 107,... 4999, we prove that the optimum cannot possibly be achieved by such regular arrangements. The evidence suggests that the limiting height-to-width ratio of rectangles containing an optimal hexagonal packing of circles tends to 2-sqrt(3) as n tends to infinity, if the limit exists.Comment: 21 pages, 13 figure

    Dense packing on uniform lattices

    Full text link
    We study the Hard Core Model on the graphs G{\rm {\bf \scriptstyle G}} obtained from Archimedean tilings i.e. configurations in {0,1}G\scriptstyle \{0,1\}^{{\rm {\bf G}}} with the nearest neighbor 1's forbidden. Our particular aim in choosing these graphs is to obtain insight to the geometry of the densest packings in a uniform discrete set-up. We establish density bounds, optimal configurations reaching them in all cases, and introduce a probabilistic cellular automaton that generates the legal configurations. Its rule involves a parameter which can be naturally characterized as packing pressure. It can have a critical value but from packing point of view just as interesting are the noncritical cases. These phenomena are related to the exponential size of the set of densest packings and more specifically whether these packings are maximally symmetric, simple laminated or essentially random packings.Comment: 18 page

    Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

    Full text link
    We study the family of intersection graphs of low density objects in low dimensional Euclidean space. This family is quite general, and includes planar graphs. We prove that such graphs have small separators. Next, we present efficient (1+ε)(1+\varepsilon)-approximation algorithms for these graphs, for Independent Set, Set Cover, and Dominating Set problems, among others. We also prove corresponding hardness of approximation for some of these optimization problems, providing a characterization of their intractability in terms of density
    corecore