8,527 research outputs found

    Supplier selection under disaster uncertainty with joint procurement

    Get PDF
    Master of ScienceDepartment of Industrial & Manufacturing Systems EngineeringJessica L. Heier StammHealth care organizations must have enough supplies and equipment on hand to adequately respond to events such as terrorist attacks, infectious disease outbreaks, and natural disasters. This is achieved through a robust supply chain system. Nationwide, states are assessing their current supply chains to identify gaps that may present issues during disaster preparedness and response. During an assessment of the Kansas health care supply chain, a number of vulnerabilities were identified, one of which being supplier consolidation. Through mergers and acquisitions, the number of suppliers within the health care field has been decreasing over the years. This can pose problems during disaster response when there is a surge in demand and multiple organizations are relying on the same suppliers to provide equipment and supplies. This thesis explores the potential for joint procurement agreements to encourage supplier diversity by splitting purchasing among multiple suppliers. In joint procurement, two or more customers combine their purchases into one large order so that they can receive quantity discounts from a supplier. This research makes three important contributions to supplier selection under disaster uncertainty. The first of these is the development of a scenario-based supplier selection model under uncertainty with joint procurement. This optimization model can be used to observe customer purchasing decisions in various scenarios while considering the probability of disaster occurrence. Second, the model is applied to a set of experiments to analyze the results when supplier diversity is increased and when joint procurement is introduced. This leads to the third and final contribution: a set of recommendations for health care organization decision makers regarding ways to increase supplier diversity and decrease the risk of disruption associated with disaster occurrence

    Multi-Echelon Inventory Optimization and Demand-Side Management: Models and Algorithms

    Get PDF
    Inventory management is a fudamental problem in supply chain management. It is widely used in practice, but it is also intrinsically hard to optimize, even for relatively simple inventory system structures. This challenge has also been heightened under the threat of supply disruptions. Whenever a supply source is disrupted, the inventory system is paralyzed, and tremenduous costs can occur as a consequence. Designing a reliable and robust inventory system that can withstand supply disruptions is vital for an inventory system\u27s performance.First we consider a basic type of inventory network, an assembly system, which produces a single end product from one or several components. A property called long-run balance allows an assembly system to be reduced to a serial system when disruptions are not present. We show that a modified version is still true under disruption risk. Based on this property, we propose a method for reducing the system into a serial system with extra inventory at certain stages that face supply disruptions. We also propose a heuristic for solving the reduced system. A numerical study shows that this heuristic performs very well, yielding significant cost savings when compared with the best-known algorithm.Next we study another basic inventory network structure, a distribution system. We study continuous-review, multi-echelon distribution systems subject to supply disruptions, with Poisson customer demands under a first-come, first-served allocation policy. We develop a recursive optimization heuristic, which applies a bottom-up approach that sequentially approximates the base-stock levels of all the locations. Our numerical study shows that it performs very well.Finally we consider a problem related to smart grids, an area where supply and demand are still decisive factors. Instead of matching supply with demand, as in the first two parts of the dissertation, now we concentrate on the interaction between supply and demand. We consider an electricity service provider that wishes to set prices for a large customer (user or aggregator) with flexible loads so that the resulting load profile matches a predetermined profile as closely as possible. We model the deterministic demand case as a bilevel problem in which the service provider sets price coefficients and the customer responds by shifting loads forward in time. We derive optimality conditions for the lower-level problem to obtain a single-level problem that can be solved efficiently. For the stochastic-demand case, we approximate the consumer\u27s best response function and use this approximation to calculate the service provider\u27s optimal strategy. Our numerical study shows the tractability of the new models for both the deterministic and stochastic cases, and that our pricing scheme is very effective for the service provider to shape consumer demand

    Ordering policies for a dual sourcing supply chain with disruption risks

    Get PDF
    Purpose: The main purpose of this article is to explore the trade-off between ordering policies and disruption risks in a dual-sourcing network under specific (or not) service level constraints, assuming that both supply channels are susceptible to disruption risks. Design/methodology/approach: Stochastic newsvendor models are presented under both the unconstrained and fill rate constraint cases. The models can be applicable for different types of disruptions related among others to the supply of raw materials, the production process, and the distribution system, as well as security breaches and natural disasters. Findings: Through the model, we obtain some important managerial insights and evaluate the value of contingency strategies in managing uncertain supply chains. Originality/value: This paper attempts to combine explicitly disruption management with risk aversion issues for a two-stage supply chain with two unreliable suppliers.Peer Reviewe

    Developing lean and responsive supply chains : a robust model for alternative risk mitigation strategies in supply chain designs

    Get PDF
    This paper investigates how organization should design their supply chains (SCs) and use risk mitigation strategies to meet different performance objectives. To do this, we develop two mixed integer nonlinear (MINL) lean and responsive models for a four-tier SC to understand these four strategies: i) holding back-up emergency stocks at the DCs, ii) holding back-up emergency stock for transshipment to all DCs at a strategic DC (for risk pooling in the SC), iii) reserving excess capacity in the facilities, and iv) using other facilities in the SC’s network to back-up the primary facilities. A new method for designing the network is developed which works based on the definition of path to cover all possible disturbances. To solve the two proposed MINL models, a linear regression approximation is suggested to linearize the models; this technique works based on a piecewise linear transformation. The efficiency of the solution technique is tested for two prevalent distribution functions. We then explore how these models operate using empirical data from an automotive SC. This enables us to develop a more comprehensive risk mitigation framework than previous studies and show how it can be used to determine the optimal SC design and risk mitigation strategies given the uncertainties faced by practitioners and the performance objectives they wish to meet

    LOGISTICAL STRATEGIES AND RISKS IN CANADIAN GRAIN MARKETING

    Get PDF
    Supply chain management in grain marketing has become very important with the maturity of the industry. This is particularly important in the Canadian grain marketing system which has experienced disruptions for various reasons over many years. These problems have been the topic of numerous industry evaluations, have resulted in a complaint about service obligations and recently have been addressed by the Estey Commission. A detailed model of the supply chain in the Canadian grain logistics system was developed in this paper to evaluate factors that cause disruptions, as well as the effect of several important logistics and marketing strategies on system performance. The results indicated that in a normal year there is sufficient randomness throughout the various elements of the system that it is expected that demurrage at the West Coast would be a major cost. However, the amount of service disruptions and demurrage are affected by several important factors including the distribution of tough and damp grains, mis-graded grain, and the level of exportable supplies. There are several important strategic variables that have important effects on system performance. These include the aggressiveness in selling relative to capacity, and the level of beginning port stocks.Grain Marketing, Transportation, Supply Chain Management, Logistics, Marketing,

    LOGISTICS AND SUPPLY CHAIN STRATEGIES IN GRAIN EXPORTING

    Get PDF
    During the past decade, the grain shipping industry has become highly competitive and technologically advanced. These changes, along with the introduction of innovative shipping mechanisms, have made logistics management an important source of opportunity and risk for grain shippers. In this study, a stochastic simulation model was developed to evaluate the tradeoffs and effects of key variables on logistical performance in managing the grain supply chain. Average demurrage cost for the supply chain was $2.03 million with the greatest cost being for railcars and the least cost being for barges. Of the stochastic variables modeled, changes in export demand had the greatest impact on demurrage costs.Supply Chain, Grain Shipping, Logistics, Demurrage, Guaranteed Freight, Industrial Organization,

    The impact of freight transport capacity limitations on supply chain dynamics

    Get PDF
    We investigate how capacity limitations in the transportation system affect the dynamic behaviour of supply chains. We are interested in the more recently defined, 'backlash' effect. Using a system dynamics simulation approach, we replicate the well-known Beer Game supply chain for different transport capacity management scenarios. The results indicate that transport capacity limitations negatively impact on inventory and backlog costs, although there is a positive impact on the 'backlash' effect. We show that it is possible for both backlog and inventory to simultaneous occur, a situation which does not arise with the uncapacitated scenario. A vertical collaborative approach to transport provision is able to overcome such a trade-off. © 2013 Taylor & Francis
    corecore