21,446 research outputs found

    Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems

    Get PDF
    To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network, the optimal number of levels and modular partition at each level, with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.Comment: 11 pages, 5 figures. For associated code, see http://www.tp.umu.se/~rosvall/code.htm

    A Divide-and-Conquer Solver for Kernel Support Vector Machines

    Full text link
    The kernel support vector machine (SVM) is one of the most widely used classification methods; however, the amount of computation required becomes the bottleneck when facing millions of samples. In this paper, we propose and analyze a novel divide-and-conquer solver for kernel SVMs (DC-SVM). In the division step, we partition the kernel SVM problem into smaller subproblems by clustering the data, so that each subproblem can be solved independently and efficiently. We show theoretically that the support vectors identified by the subproblem solution are likely to be support vectors of the entire kernel SVM problem, provided that the problem is partitioned appropriately by kernel clustering. In the conquer step, the local solutions from the subproblems are used to initialize a global coordinate descent solver, which converges quickly as suggested by our analysis. By extending this idea, we develop a multilevel Divide-and-Conquer SVM algorithm with adaptive clustering and early prediction strategy, which outperforms state-of-the-art methods in terms of training speed, testing accuracy, and memory usage. As an example, on the covtype dataset with half-a-million samples, DC-SVM is 7 times faster than LIBSVM in obtaining the exact SVM solution (to within 10610^{-6} relative error) which achieves 96.15% prediction accuracy. Moreover, with our proposed early prediction strategy, DC-SVM achieves about 96% accuracy in only 12 minutes, which is more than 100 times faster than LIBSVM

    A Multilevel Approach to Topology-Aware Collective Operations in Computational Grids

    Full text link
    The efficient implementation of collective communiction operations has received much attention. Initial efforts produced "optimal" trees based on network communication models that assumed equal point-to-point latencies between any two processes. This assumption is violated in most practical settings, however, particularly in heterogeneous systems such as clusters of SMPs and wide-area "computational Grids," with the result that collective operations perform suboptimally. In response, more recent work has focused on creating topology-aware trees for collective operations that minimize communication across slower channels (e.g., a wide-area network). While these efforts have significant communication benefits, they all limit their view of the network to only two layers. We present a strategy based upon a multilayer view of the network. By creating multilevel topology-aware trees we take advantage of communication cost differences at every level in the network. We used this strategy to implement topology-aware versions of several MPI collective operations in MPICH-G2, the Globus Toolkit[tm]-enabled version of the popular MPICH implementation of the MPI standard. Using information about topology provided by MPICH-G2, we construct these multilevel topology-aware trees automatically during execution. We present results demonstrating the advantages of our multilevel approach by comparing it to the default (topology-unaware) implementation provided by MPICH and a topology-aware two-layer implementation.Comment: 16 pages, 8 figure
    corecore