6,703 research outputs found

    Optimal normal bases in GF(pn)

    Get PDF
    AbstractIn this paper the use of normal bases for multiplication in the finite fields GF(pn) is examined. We introduce the concept of an optimal normal basis in order to reduce the hardware complexity of multiplying field elements. Constructions for these bases in GF(2n) and extensions of the results to GF(pn) are presented. This work has applications in crytography and coding theory since a reduction in the complexity of multiplying and exponentiating elements of GF(2n) is achieved for many values of n, some prime

    Discrete phase-space structure of nn-qubit mutually unbiased bases

    Full text link
    We work out the phase-space structure for a system of nn qubits. We replace the field of real numbers that label the axes of the continuous phase space by the finite field \Gal{2^n} and investigate the geometrical structures compatible with the notion of unbiasedness. These consist of bundles of discrete curves intersecting only at the origin and satisfying certain additional properties. We provide a simple classification of such curves and study in detail the four- and eight-dimensional cases, analyzing also the effect of local transformations. In this way, we provide a comprehensive phase-space approach to the construction of mutually unbiased bases for nn qubits.Comment: Title changed. Improved version. Accepted for publication in Annals of Physic

    An Approximation Problem in Multiplicatively Invariant Spaces

    Full text link
    Let H\mathcal{H} be Hilbert space and (Ω,μ)(\Omega,\mu) a σ\sigma-finite measure space. Multiplicatively invariant (MI) spaces are closed subspaces of L2(Ω,H) L^2(\Omega, \mathcal{H}) that are invariant under point-wise multiplication by functions in a fix subset of L(Ω).L^{\infty}(\Omega). Given a finite set of data FL2(Ω,H),\mathcal{F}\subseteq L^2(\Omega, \mathcal{H}), in this paper we prove the existence and construct an MI space MM that best fits F\mathcal{F}, in the least squares sense. MI spaces are related to shift invariant (SI) spaces via a fiberization map, which allows us to solve an approximation problem for SI spaces in the context of locally compact abelian groups. On the other hand, we introduce the notion of decomposable MI spaces (MI spaces that can be decomposed into an orthogonal sum of MI subspaces) and solve the approximation problem for the class of these spaces. Since SI spaces having extra invariance are in one-to-one relation to decomposable MI spaces, we also solve our approximation problem for this class of SI spaces. Finally we prove that translation invariant spaces are in correspondence with totally decomposable MI spaces.Comment: 18 pages, To appear in Contemporary Mathematic

    Construction of self-dual normal bases and their complexity

    Get PDF
    Recent work of Pickett has given a construction of self-dual normal bases for extensions of finite fields, whenever they exist. In this article we present these results in an explicit and constructive manner and apply them, through computer search, to identify the lowest complexity of self-dual normal bases for extensions of low degree. Comparisons to similar searches amongst normal bases show that the lowest complexity is often achieved from a self-dual normal basis

    Composite Cyclotomic Fourier Transforms with Reduced Complexities

    Full text link
    Discrete Fourier transforms~(DFTs) over finite fields have widespread applications in digital communication and storage systems. Hence, reducing the computational complexities of DFTs is of great significance. Recently proposed cyclotomic fast Fourier transforms (CFFTs) are promising due to their low multiplicative complexities. Unfortunately, there are two issues with CFFTs: (1) they rely on efficient short cyclic convolution algorithms, which has not been investigated thoroughly yet, and (2) they have very high additive complexities when directly implemented. In this paper, we address both issues. One of the main contributions of this paper is efficient bilinear 11-point cyclic convolution algorithms, which allow us to construct CFFTs over GF(211)(2^{11}). The other main contribution of this paper is that we propose composite cyclotomic Fourier transforms (CCFTs). In comparison to previously proposed fast Fourier transforms, our CCFTs achieve lower overall complexities for moderate to long lengths, and the improvement significantly increases as the length grows. Our 2047-point and 4095-point CCFTs are also first efficient DFTs of such lengths to the best of our knowledge. Finally, our CCFTs are also advantageous for hardware implementations due to their regular and modular structure.Comment: submitted to IEEE trans on Signal Processin
    corecore