90 research outputs found

    Approximating tensor product BĂ©zier surfaces with tangent plane continuity

    Get PDF
    AbstractWe present a simple method for degree reduction of tensor product BĂ©zier surfaces with tangent plane continuity in L2-norm. Continuity constraints at the four corners of surfaces are considered, so that the boundary curves preserve endpoints continuity of any order α. We obtain matrix representations for the control points of the degree reduced surfaces by the least-squares method. A simple optimization scheme that minimizes the perturbations of some related control points is proposed, and the surface patches after adjustment are C∞ continuous in the interior and G1 continuous at the common boundaries. We show that this scheme is applicable to surface patches defined on chessboard-like domains

    The use of hybrid intuitive class shape transformation curves in aerodynamic design

    Get PDF
    The inherent mathematical smoothness of intuitive class shape transformation (iCST) curves has been shown to be suitable for the design of aerodynamic shapes. However, this property means that any changes to a constraint are not local but will result in a modification to the whole curve. This poses a problem to the aerodynamic designer when different parts of the curve are required to fulfil particular design requirements. A Hybrid iCST (HiCST) parameterisation approach is proposed which allows two sections of a single aero-line curve to be decoupled, without geometric discontinuity, whilst maintaining the dimensionality of a design problem. The HiCST approach has been tested on two key aerodynamic components of an aero-engine. Firstly, a design space exploration and optimisation were carried out for an aero-engine fan cowl. A comparison of Pareto fronts showed a 3.9% reduction in the minimum achievable nacelle drag from the iCST to the HiCST parameterisation. Secondly, aero-engine intakes were designed with both the iCST and HiCST parameterisations. The HiCST intake showed improved aerodynamic performance in terms of DC60 and IPR and proved more insensitive to changes in massflow and incidence. This development of the method for an aero-engine fan cowl and intake highlights the potential aerodynamic benefit from the proposed HiCST method

    Rationalization with ruled surfaces in architecture

    Get PDF

    A survey of parametric modelling methods for designing the head of a high-speed train

    Get PDF
    With the continuous increase of the running speed, the head shape of the high-speed train (HST) turns out to be a critical factor for further speed boost. In order to cut down the time used in the HST head design and improve the modelling efficiency, various parametric modelling methods have been widely applied in the optimization design of the HST head to obtain an optimal head shape so that the aerodynamic effect acting on the head of HSTs can be reduced and more energy can be saved. This paper reviews these parametric modelling methods and classifies them into four categories: 2D, 3D, CATIA-based, and mesh deformation-based parametric modelling methods. Each of the methods is introduced, and the advantages and disadvantages of these methods are identified. The simulation results are presented to demonstrate that the aerodynamic performance of the optimal models constructed by these parametric modelling methods has been improved when compared with numerical calculation results of the original models or the prototype models of running trains. Since different parametric modelling methods used different original models and optimization methods, few publications could be found which compare the simulation results of the aerodynamic performance among different parametric modelling methods. In spite of this, these parametric modelling methods indicate more local shape details will lead to more accurate simulation results, and fewer design variables will result in higher computational efficiency. Therefore, the ability of describing more local shape details with fewer design variables could serve as a main specification to assess the performance of various parametric modelling methods. The future research directions may concentrate on how to improve such ability

    Non-Uniform Rational B-Splines and Rational Bezier Triangles for Isogeometric Analysis of Structural Applications

    Full text link
    Isogeometric Analysis (IGA) is a major advancement in computational analysis that bridges the gap between a computer-aided design (CAD) model, which is typically constructed using Non-Uniform Rational B-splines (NURBS), and a computational model that traditionally uses Lagrange polynomials to represent the geometry and solution variables. In IGA, the same shape functions that are used in CAD are employed for analysis. The direct manipulation of CAD data eliminates approximation errors that emanate from the process of converting the geometry from CAD to Finite Element Analysis (FEA). As a result, IGA allows the exact geometry to be represented at the coarsest level and maintained throughout the analysis process. While IGA was initially introduced to streamline the design and analysis process, this dissertation shows that IGA can also provide improved computational results for complex and highly nonlinear problems in structural mechanics. This dissertation addresses various problems in structural mechanics in the context of IGA, with the use of NURBS and rational BĂ©zier triangles for the description of the parametric and physical spaces. The approaches considered here show that a number of important properties (e.g., high-order smoothness, geometric exactness, reduced number of degrees of freedom, and increased flexibility in discretization) can be achieved, leading to improved numerical solutions. Specifically, using B-splines and a layer-based discretization, a distributed plasticity isogeometric frame model is formulated to capture the spread of plasticity in large-deformation frames. The modeling approach includes an adaptive analysis where the structure of interest is initially modeled with coarse mesh and knots are inserted based on the yielding information at the quadrature points. It is demonstrated that improvement on efficiency and convergence rates is attained. With NURBS, an isogeometric rotation-free multi-layered plate formulation is developed based on a layerwise deformation theory. The derivation assumes a separate displacement field expansion within each layer, and considers transverse displacement component as C0-continuous at dissimilar material interfaces, which is enforced via knot repetition. The separate integration of the in-plane and through-thickness directions allows to capture the complete 3D stresses in a 2D setting. The proposed method is used to predict the behavior of advanced materials such as laminated composites, and the results show advantages in efficiency and accuracy. To increase the flexibility in discretizing complex geometries, rational BĂ©zier triangles for domain triangulation is studied. They are further coupled with a Delaunay-based feature-preserving discretization algorithm for static bending and free vibration analysis of Kirchhoff plates. Lagrange multipliers are employed to explicitly impose high-order continuity constraints and the augmented system is solved iteratively without increasing the matrix size. The resulting discretization is geometrically exact, admits small geometric features, and constitutes C1-continuity. The feature-preserving rational BĂ©zier triangles are further applied to smeared damage modeling of quasi-brittle materials. Due to the ability of Lagrange multipliers to raise global continuity to any desired order, the implicit fourth- and sixth-order gradient damage models are analyzed. The inclusion of higher-order terms in the nonlocal Taylor expansion improves solution accuracy. A local refinement algorithm that resolves marked regions with high resolution while keeping the resulting mesh conforming and well-conditioned is also utilized to improve efficiency. The outcome is a unified modeling framework where the feature-preserving discretization is able to capture the damage initiation and early-stage propagation, and the local refinement technique can then be applied to adaptively refine the mesh in the direction of damage propagation.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147668/1/ningliu_1.pd

    A global search algorithm for phase transition pathways in computer-aided nano-design

    Get PDF
    One of the most important design issues for phase change materials is to engineer the phase transition process. The challenge of accurately predicting a phase transition is estimating the true value of transition rate, which is determined by the saddle point with the minimum energy barrier between stable states on the potential energy surface (PES). In this thesis, a new algorithm for searching the minimum energy path (MEP) is presented. The new algorithm is able to locate both the saddle point and local minima simultaneously. Therefore no prior knowledge of the precise positions for the reactant and product on the PES is needed. Unlike existing pathway search methods, the algorithm is able to search multiple transition paths on the PES simultaneously, which gives us a more comprehensive view of the energy landscape than searching individual ones. In this method, a BĂ©zier curve is used to represent each transition path. During the searching process, the reactant and product states are located by minimizing the two end control points of the curve, while the shape of the transition pathway is refined by moving the intermediate control points of the curve in the conjugate directions. A curve subdivision scheme is developed so that multiple transitions paths can be located. The algorithm is demonstrated by examples of LEPS potential, LEPS plus harmonic oscillator potential, and PESs defined by Rastrigin function and Schwefel function.M.S

    Approximate Multidegree Reduction of λ

    Get PDF
    Besides inheriting the properties of classical BĂ©zier curves of degree n, the corresponding λ-BĂ©zier curves have a good performance in adjusting their shapes by changing shape control parameter. In this paper, we derive an approximation algorithm for multidegree reduction of λ-BĂ©zier curves in the L2-norm. By analysing the properties of λ-BĂ©zier curves of degree n, a method which can deal with approximating λ-BĂ©zier curve of degree n+1 by λ-BĂ©zier curve of degree m  (m≀n) is presented. Then, in unrestricted and C0, C1 constraint conditions, the new control points of approximating λ-BĂ©zier curve can be obtained by solving linear equations, which can minimize the least square error between the approximating curves and the original ones. Finally, several numerical examples of degree reduction are given and the errors are computed in three conditions. The results indicate that the proposed method is effective and easy to implement

    IgA-BEM for 3D Helmholtz problems using conforming and non-conforming multi-patch discretizations and B-spline tailored numerical integration

    Get PDF
    An Isogeometric Boundary Element Method (IgA-BEM) is considered for the numerical solution of Helmholtz problems on 3D bounded or unbounded domains, admitting a smooth multi-patch representation of their finite boundary surface. The discretization spaces are formed by C0 inter-patch continuous functional spaces whose restriction to a patch simplifies to the span of tensor product B-splines composed with the given patch NURBS parameterization. Both conforming and non-conforming spaces are allowed, so that local refinement is possible at the patch level. For regular and singular integration, the proposed model utilizes a numerical procedure defined on the support of each trial B-spline function, which makes possible a function-by-function implementation of the matrix assembly phase. Spline quasi-interpolation is the common ingredient of all the considered quadrature rules; in the singular case it is combined with a B-spline recursion over the spline degree and with a singularity extraction technique, extended to the multi-patch setting for the first time. A threshold selection strategy is proposed to automatically distinguish between nearly singular and regular integrals. The non-conforming C0 joints between spline spaces on different patches are implemented as linear constraints based on knot removal conditions, and do not require a hierarchical master-slave relation between neighbouring patches. Numerical examples on relevant benchmarks show that the expected convergence orders are achieved with uniform discretization and a small number of uniformly spaced quadrature nodes
    • 

    corecore