139 research outputs found

    Optimal 4G OFDMA Dynamic Subcarrier and Power Auction-based Allocation towards H.264 Scalable Video Transmission

    Get PDF
    In this paper, authors presented a price maximization scheme for optimal orthogonal frequency division for multiple access (OFDMA) subcarrier allocation for wireless video unicast/multicast scenarios. They formulate a pricing based video utility function for H.264 based wireless scalable video streaming, thereby achieving a trade-off between price and QoS fairness. These parametric models for scalable video rate and quality characterization arederived from the standard JSVM reference codec for the SVC extension of the H.264/AVC, and hence are directly applicable in practical wireless scenarios. With the aid of these models, they proposed auction based framework for revenue maximization of the transmitted video streams in the unicast and multicast 4G scenario. A closedform expression is derived for the optimal scalable video quantization step-size subject to the constraints of theunicast/multicast users in 4G wireless systems. This yields the optimal OFDMA subcarrier allocation for multi-userscalable video multiplexing. The proposed scheme is cognizant of the user modulation and code rate, and is henceamenable to adaptive modulation and coding (AMC) feature of 4G wireless networks. Further, they also consider aframework for optimal power allocation based on a novel revenue maximization scheme in OFDMA based wireless broadband 4G systems employing auction bidding models. This is formulated as a constrained convex optimization problem towards sum video utility maximization. We observe that as the demand for a video stream increases inbroadcast/multicast scenarios, higher power is allocated to the corresponding video stream leading to a gain in the overall revenue/utility. We simulate a standard WiMAX based 4G video transmission scenario to validate the performance of the proposed optimal 4G scalable video resource allocation schemes. Simulations illustrate that the proposed optimal band width and power allocation schemes result in a significant performance improvement over the suboptimal equal resource allocation schemes for scalable video transmission.Defence Science Journal, 2013, 63(1), pp.15-24, DOI:http://dx.doi.org/10.14429/dsj.63.375

    WIMAX Basics from PHY Layer to Scheduling and Multicasting Approaches

    Get PDF
    WiMAX (Worldwide Interoperability for Microwave Access) is an emerging broadband wireless technology for providing Last mile solutions for supporting higher bandwidth and multiple service classes with various quality of service requirement. The unique architecture of the WiMAX MAC and PHY layers that uses OFDMA to allocate multiple channels with different modulation schema and multiple time slots for each channel allows better adaptation of heterogeneous user’s requirements. The main architecture in WiMAX uses PMP (Point to Multipoint), Mesh mode or the new MMR (Mobile Multi hop Mode) deployments where scheduling and multicasting have different approaches. In PMP SS (Subscriber Station) connects directly to BS (Base Station) in a single hop route so channel conditions adaptations and supporting QoS for classes of services is the key points in scheduling, admission control or multicasting, while in Mesh networks SS connects to other SS Stations or to the BS in a multi hop routes, the MMR mode extends the PMP mode in which the SS connects to either a relay station (RS) or to Bs. Both MMR and Mesh uses centralized or distributed scheduling with multicasting schemas based on scheduling trees for routing. In this paper a broad study is conducted About WiMAX technology PMP and Mesh deployments from main physical layers features with differentiation of MAC layer features to scheduling and multicasting approaches in both modes of operations

    Handover analysis over mobile WiMAX technology.

    Get PDF
    As new mobile devices and mobile applications continue to growth, so does the data traffic demand for broadband services access and the user needs toward mobility, thereby, wireless application became today the fastest solution and lowest cost implementation unlike traditional wired deployment such as optical fibers and digital lines. WiMAX technology satisfies this gap through its high network performance over the air interface and high data rates based on the IEEE 802.16-2004 standards, this original specification does not support mobility. Therefore, the IEEE introduces a new standard that enables mobility profiles under 802.16e-2005, from which three different types of handovers process are introduced as hard handover (HHO), macro diversity handover (MDHO) and fast base station switching (FBSS) handover. The objective of this master thesis is to analyze how the handover process affects network performance. The analysis propose three scenarios, built over OPNET simulator to measure the most critical wireless parameter and performance indicator such as throughput, handover success rate, packet drop, delay and network usage.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Efficient Multicast in Next Generation Mobile Networks

    Get PDF

    Subcarrier and Power Allocation in WiMAX

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is one of the latest technologies for providing Broadband Wireless Access (BWA) in a metropolitan area. The use of orthogonal frequency division multiplexing (OFDM) transmissions has been proposed in WiMAX to mitigate the complications which are associated with frequency selective channels. In addition, the multiple access is achieved by using orthogonal frequency division multiple access (OFDMA) scheme which has several advantages such as flexible resource allocation, relatively simple transceivers, and high spectrum efficient. In OFDMA the controllable resources are the subcarriers and the allocated power per subband. Moreover, adaptive subcarrier and power allocation techniques have been selected to exploit the natural multiuser diversity. This leads to an improvement of the performance by assigning the proper subcarriers to the user according to their channel quality and the power is allocated based on water-filling algorithm. One simple method is to allocate subcarriers and powers equally likely between all users. It is well known that this method reduces the spectral efficiency of the system, hence, it is not preferred unless in some applications. In order to handle the spectral efficiency problem, in this thesis we discuss three novel resources allocation algorithms for the downlink of a multiuser OFDM system and analyze the algorithm performances based on capacity and fairness measurement. Our intensive simulations validate the algorithm performances.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Design of interface selection protocols for multi-homed wireless networks

    Get PDF
    The IEEE 802.11/802.16 standards conformant wireless communication stations have multi-homing transmission capability. To achieve greater communication efficiency, multi-homing capable stations use handover mechanism to select appropriate transmission channel according to variations in the channel quality. This thesis presents three internal-linked handover schemes, (1) Interface Selection Protocol (ISP), belonging to Wireless Local Area Network (WLAN)- Worldwide Interoperability for Microwave Access (WiMAX) environment (2) Fast Channel Scanning (FCS) and (3) Traffic Manager (TM), (2) and (3) belonging to WiMAX Environment. The proposed schemes in this thesis use a novel mechanism of providing a reliable communication route. This solution is based on a cross-layer communication framework, where the interface selection module uses various network related parameters from Medium Access Control (MAC) sub-layer/Physical Layer (PHY) across the protocol suite for decision making at the Network layer. The proposed solutions are highly responsive when compared with existing multi-homed schemes; responsiveness is one of the key factors in the design of such protocols. Selected route under these schemes is based on the most up to date link-layer information. Therefore, such a route is not only reliable in terms of route optimization but it also fulfils the application demands in terms of throughput and delay. Design of ISP protocol use probing frames during the route discovery process. The 802.11 mandates the use of different rates for data transmission frames. The ISP-metric can be incorporated into various routing aspects and its applicability is determined by the possibility of provision of MAC dependent parameters that are used to determine the best path metric values. In many cases, higher device density, interference and mobility cause variable medium access delays. It causes creation of ‘unreachable zones’, where destination is marked as unreachable. However, by use of the best path metric, the destination has been made reachable, anytime and anywhere, because of the intelligent use of the probing frames and interface selection algorithm implemented. The IEEE 802.16e introduces several MAC level queues for different access categories, maintaining service requirement within these queues; which imply that frames from a higher priority queue, i.e. video frames, are serviced more frequently than those belonging to lower priority queues. Such an enhancement at the MAC sub-layer introduces uneven queuing delays. Conventional routing protocols are unaware of such MAC specific constraints and as a result, these factors are not considered which result in channel performance degradation. To meet such challenges, the thesis presents FCS and TM schemes for WiMAX. For FCS, Its solution is to improve the mobile WiMAX handover and address the scanning latency. Since minimum scanning time is the most important issue in the handover process. This handover scheme aims to utilize the channel efficiently and apply such a procedure to reduce the time it takes to scan the neighboring access stations. TM uses MAC and physical layer (PHY) specific information in the interface metric and maintains a separate path to destination by applying an alternative interface operation. Simulation tests and comparisons with existing multi-homed protocols and handover schemes demonstrate the effectiveness of incorporating the medium dependent parameters. Moreover, show that suggested schemes, have shown better performance in terms of end-to-end delay and throughput, with efficiency up to 40% in specific test scenarios.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore