260 research outputs found

    Raspberry Pi-based Motion Control Testbed for Mechatronics Education

    Get PDF
    The paper deals with the development of an experimental benchmark mechatronic system that was employed in control courses taught at our university. The first part introduces its mechanical design, installed instrumentation and software environment. Methodology of its use in terms of our control courses curriculum follows, highlighting particular problems that students can solve during their classes. The last section summarises our observations regarding the contribution of this tool to the effectiveness of the education process

    Development of a silicon photomultiplier based innovative and low cost positron emission tomography scanner.

    Get PDF
    The Silicon Photomultiplier (SiPM) is a state-of-the-art semiconductor photodetector consisting of a high density matrix (up to 104) of independent pixels of micro-metric dimension (from 10 μm to 100 μm) which form a macroscopic unit of 1 to 6 mm2 area. Each pixel is a single-photon avalanche diode operated with a bias voltage of a few volts above the breakdown voltage. When a charge carrier is generated in a pixel by an incoming photon or a thermal effect, a Geiger discharge confined to that pixel is initiated and an intrinsic gain of about 106 is obtained. The output signal of a pixel is the same regardless of the number of interacting photons and provide only a binary information. Since the pixels are arranged on a common Silicon substrate and are connected in parallel to the same readout line, the SiPM combined output response corresponds to the sum of all fired pixel currents. As a result, the SiPM as a whole is an analogue detector, which can measure the incoming light intensity. Nowadays a great number of companies are investing increasing efforts in SiPM detector performances and high quality mass production. SiPMs are in rapid evolution and benefit from the tremendous development of the Silicon technology in terms of cost production, design flexibility and performances. They have reached a high single photon detection sensitivity and photon detection efficiency, an excellent time resolution, an extended dynamic range. They require a low bias voltage and have a low power consumption, they are very compact, robust, flexible and cheap. Considering also their intrinsic insensitivity to magnetic field they result to have an extremely high potential in fundamental and applied science (particle and nuclear physics, astrophysics, biology, environmental science and nuclear medicine) and industry. The SiPM performances are influenced by some effects, as saturation, afterpulsing and crosstalk, which lead to an inherent non-proportional response with respect to the number of incident photons. Consequently, it is not trivial to relate the measured electronic signal to the corresponding light intensity. Since for most applications it is desirable to qualify the SiPM response (i.e in order to properly design a detector for a given application, perform corrections on measurements or on energy spectra, calibrate a SiPM for low light measurements, predict detector performance) the implementation of characterization procedures plays a key role. The SiPM field of application that has been considered in this thesis is the Positron Emission Tomography (PET). PET represents the most advanced in-vivo nuclear imaging modality: it provides functional information of the physiological and molecular processes of organs and tissues. Thanks to its diagnostic power, PET has a recognized superiority over all other imaging modalities in oncology, neurology and cardiology. SiPMs are usually successfully employed for the PET scanners because they allow the measurement of the Time Of Flight of the two coincidence photons to improve the signal to noise ratio of the reconstructed images. They also permit to perfectly combine the functional information with the anatomical one by inserting the PET scanner inside the Magnetic Resonance Imaging device. Recently, PET technology has also been applied to preclinical imaging to allow non invasive studies on small animals. The increasing demand for preclinical PET scanner is driven by the fact that small animals host a large number of human diseases. In-vivo imaging has the advantage to enable the measurement of the radiopharmaceutical distribution in the same animal for an extended period of time. As a result, PET represents a powerful research tool as it offers the possibility to study the abnormalities at the origin of a disease, understand its dynamics, evaluate the therapeutic response and develop new drugs and treatments. However, the cost and the complexity of the preclinical scanners are limiting factors for the spread of PET technology: 70-80% of small-animal PET is concentrated in academic or government research laboratories. The EasyPET concept proposed in this Thesis, protected under a patent filed by Aveiro University, aims to achieve a simple and affordable preclinical PET scanner. The innovative concept is based on a single pair of detector kept collinear during the whole data acquisition and a moving mechanism with two degrees of freedom to reproduce the functionalities of an entire PET ring. The main advantages are in terms of the reduction of the complexity and cost of the PET system. In addition the concept is bound to be robust against acollinear photoemission, scatter radiation and parallax error. The sensitivity is expected to represent a fragility due to the reduced geometrical acceptance. This drawback can be partially recovered by the possibility to accept Compton scattering events without introducing image degradation effects, thanks to the sensor alignment. A 2D imaging demonstrator has been realized in order to assess the EasyPET concept and its performance has been analyzed in this Thesis to verify the net balance between competing advantages and drawbacks. The demonstrator had a leading role in the outreach activity to promote the EasyPET concept and a significant outcome is represented by the new partners that recently joined the collaboration. The EasyPET has been licensed to Caen S.p.a. and, thanks to the participation of Nuclear Instruments to the electronic board re-designed, a new prototype has been realized with additional improvements concerning the mechanics and the control software. In this Thesis the prototype functionalities and performances are reported as a result of a commissioning procedure. The EasyPET will be commercialized by Caen S.p.a. as a product for the educational market and it will be addressed to high level didactic laboratories to show the operating principles and technology behind the PET imaging. The topics mentioned above will be examined in depth in the following Chapters according to the subsequent order. In Chapter 1 the Silicon Photomultiplier will be described in detail, from their operating principle to their main application fields passing through the advantages and the drawback effects connected with this type of sensor. Chapter 2 is dedicated to a SiPM standard characterization method based on the staircase and resolving power measurement. A more refined analysis involves the Multi-Photon spectrum, obtained by integrating the SiPM response to a light pulse. It exploits the SiPM single photon sensitivity and its photon number resolving capability to measure some of its properties of general interest for a multitude of potential applications, disentangling the features related to the statistics of the incident light. Chapter 3 reports another SiPM characterization method which implements a post-processing of the digitized SiPM waveforms with the aim of extracting a full picture of the sensor characteristics from a unique data-set. The procedure is very robust, effective and semi-automatic and suitable for sensors of various dimensions and produced by different vendors. Chapter 4 introduces the Positron Emission Tomography imaging: its principle, applications, related issues and state of the art of PET scanner will be explained. Chapter 5 deals with the preclinical PET, reporting the benefits and the technological challenges involved, the performance of the commercially available small animal PET scanners, the main applications and the frontier research in this field. In Chapter 6 the EasyPET concept is introduced. In particular, the basic idea behind the operating principle, the design layout and the image reconstruction will be illustrated and then assessed through the description and the performance analysis of the EasyPET proof of concept and demonstrator. The effect of the use of different sensor to improve the light collection and the coincidence detection efficiency, together with the analysis of the importance of the sensor and the crystal alignment will be reported in Chapter 7. The design, the functionalities and the commissioning of the EasyPET prototype addressed to the educational market will be defined in Chapter 8. Finally, Chapter 9 contains a summary of the conclusions and an outlook of the future research studies

    MR-Compatible Blood Sampler for PET

    Get PDF
    Over the last few years, the idea of simultaneous MR-PET imaging has attracted more and more research interest. This new bimodal technique promises accurate structural and functional information of the investigated object at the same time. While PET-CT has already established as a powerful bimodal imaging technique, MR offers better distinction of soft matter, which can be advantageous especially for brain research. Future studies in this field could also include simultaneous scans with fMRI and PET. For certain measurements (e.g. cerebral blood flow, metabolic rates), the quantitative analysis of PET data requires knowledge of the arterial input function (time-activity-curve of patient blood). In other words, the amount of radioactivity in the arterial blood has to be monitored constantly. Ordinary, commercially available blood sampling systems are based on Photo Multiplier Tubes (PMTs) that cannot be operated in an MR environment. An MR-compatible blood sampler was therefore designed and built to be able to exploit the full potential of hybrid MR-PET. Basically, the new device works as follows. Arterial blood is drawn out of the patient and conducted via a catheter through the detector unit of the blood sampler. The two annihilation photons that emerge after positron decay are detected separately by two scintillation crystals (50mm x 40mm x 30mm Lutetium Oxyorthosilicate (LSO)) that surround the catheter in a sandwich-like geometry. Each scintillation crystal is coupled to a single Avalanche Photodiode (APD). Both signals are fed through a 12m cable to the MR filter plate, where they are low-pass filtered. The pulse processing electronics, which are set behind the filter plate, are essentially performing a coincidence detection of annihilation photons. A major technical challenge was to deal with the pronounced temperature sensitivity and the relatively noisy signals of APDs. Besides appropriate considerations for the mechanical and electronical design, the solution involved the development of a new online algorithm that monitors the effective gain of the APDs and corrects for gain drifts. The prototype system was successfully tested for MR-compatibility in a Siemens Magnetom Trio MR tomograph. Furthermore, the blood sampler was used during PET scans of rats to prove the applicability of the new device

    Development of a silicon photomultiplier based innovative and low cost positron emission tomography scanner.

    Get PDF
    The Silicon Photomultiplier (SiPM) is a state-of-the-art semiconductor photodetector consisting of a high density matrix (up to 104) of independent pixels of micro-metric dimension (from 10 \u3bcm to 100 \u3bcm) which form a macroscopic unit of 1 to 6 mm2 area. Each pixel is a single-photon avalanche diode operated with a bias voltage of a few volts above the breakdown voltage. When a charge carrier is generated in a pixel by an incoming photon or a thermal effect, a Geiger discharge confined to that pixel is initiated and an intrinsic gain of about 106 is obtained. The output signal of a pixel is the same regardless of the number of interacting photons and provide only a binary information. Since the pixels are arranged on a common Silicon substrate and are connected in parallel to the same readout line, the SiPM combined output response corresponds to the sum of all fired pixel currents. As a result, the SiPM as a whole is an analogue detector, which can measure the incoming light intensity. Nowadays a great number of companies are investing increasing efforts in SiPM detector performances and high quality mass production. SiPMs are in rapid evolution and benefit from the tremendous development of the Silicon technology in terms of cost production, design flexibility and performances. They have reached a high single photon detection sensitivity and photon detection efficiency, an excellent time resolution, an extended dynamic range. They require a low bias voltage and have a low power consumption, they are very compact, robust, flexible and cheap. Considering also their intrinsic insensitivity to magnetic field they result to have an extremely high potential in fundamental and applied science (particle and nuclear physics, astrophysics, biology, environmental science and nuclear medicine) and industry. The SiPM performances are influenced by some effects, as saturation, afterpulsing and crosstalk, which lead to an inherent non-proportional response with respect to the number of incident photons. Consequently, it is not trivial to relate the measured electronic signal to the corresponding light intensity. Since for most applications it is desirable to qualify the SiPM response (i.e in order to properly design a detector for a given application, perform corrections on measurements or on energy spectra, calibrate a SiPM for low light measurements, predict detector performance) the implementation of characterization procedures plays a key role. The SiPM field of application that has been considered in this thesis is the Positron Emission Tomography (PET). PET represents the most advanced in-vivo nuclear imaging modality: it provides functional information of the physiological and molecular processes of organs and tissues. Thanks to its diagnostic power, PET has a recognized superiority over all other imaging modalities in oncology, neurology and cardiology. SiPMs are usually successfully employed for the PET scanners because they allow the measurement of the Time Of Flight of the two coincidence photons to improve the signal to noise ratio of the reconstructed images. They also permit to perfectly combine the functional information with the anatomical one by inserting the PET scanner inside the Magnetic Resonance Imaging device. Recently, PET technology has also been applied to preclinical imaging to allow non invasive studies on small animals. The increasing demand for preclinical PET scanner is driven by the fact that small animals host a large number of human diseases. In-vivo imaging has the advantage to enable the measurement of the radiopharmaceutical distribution in the same animal for an extended period of time. As a result, PET represents a powerful research tool as it offers the possibility to study the abnormalities at the origin of a disease, understand its dynamics, evaluate the therapeutic response and develop new drugs and treatments. However, the cost and the complexity of the preclinical scanners are limiting factors for the spread of PET technology: 70-80% of small-animal PET is concentrated in academic or government research laboratories. The EasyPET concept proposed in this Thesis, protected under a patent filed by Aveiro University, aims to achieve a simple and affordable preclinical PET scanner. The innovative concept is based on a single pair of detector kept collinear during the whole data acquisition and a moving mechanism with two degrees of freedom to reproduce the functionalities of an entire PET ring. The main advantages are in terms of the reduction of the complexity and cost of the PET system. In addition the concept is bound to be robust against acollinear photoemission, scatter radiation and parallax error. The sensitivity is expected to represent a fragility due to the reduced geometrical acceptance. This drawback can be partially recovered by the possibility to accept Compton scattering events without introducing image degradation effects, thanks to the sensor alignment. A 2D imaging demonstrator has been realized in order to assess the EasyPET concept and its performance has been analyzed in this Thesis to verify the net balance between competing advantages and drawbacks. The demonstrator had a leading role in the outreach activity to promote the EasyPET concept and a significant outcome is represented by the new partners that recently joined the collaboration. The EasyPET has been licensed to Caen S.p.a. and, thanks to the participation of Nuclear Instruments to the electronic board re-designed, a new prototype has been realized with additional improvements concerning the mechanics and the control software. In this Thesis the prototype functionalities and performances are reported as a result of a commissioning procedure. The EasyPET will be commercialized by Caen S.p.a. as a product for the educational market and it will be addressed to high level didactic laboratories to show the operating principles and technology behind the PET imaging. The topics mentioned above will be examined in depth in the following Chapters according to the subsequent order. In Chapter 1 the Silicon Photomultiplier will be described in detail, from their operating principle to their main application fields passing through the advantages and the drawback effects connected with this type of sensor. Chapter 2 is dedicated to a SiPM standard characterization method based on the staircase and resolving power measurement. A more refined analysis involves the Multi-Photon spectrum, obtained by integrating the SiPM response to a light pulse. It exploits the SiPM single photon sensitivity and its photon number resolving capability to measure some of its properties of general interest for a multitude of potential applications, disentangling the features related to the statistics of the incident light. Chapter 3 reports another SiPM characterization method which implements a post-processing of the digitized SiPM waveforms with the aim of extracting a full picture of the sensor characteristics from a unique data-set. The procedure is very robust, effective and semi-automatic and suitable for sensors of various dimensions and produced by different vendors. Chapter 4 introduces the Positron Emission Tomography imaging: its principle, applications, related issues and state of the art of PET scanner will be explained. Chapter 5 deals with the preclinical PET, reporting the benefits and the technological challenges involved, the performance of the commercially available small animal PET scanners, the main applications and the frontier research in this field. In Chapter 6 the EasyPET concept is introduced. In particular, the basic idea behind the operating principle, the design layout and the image reconstruction will be illustrated and then assessed through the description and the performance analysis of the EasyPET proof of concept and demonstrator. The effect of the use of different sensor to improve the light collection and the coincidence detection efficiency, together with the analysis of the importance of the sensor and the crystal alignment will be reported in Chapter 7. The design, the functionalities and the commissioning of the EasyPET prototype addressed to the educational market will be defined in Chapter 8. Finally, Chapter 9 contains a summary of the conclusions and an outlook of the future research studies

    A Framework for Life Cycle Cost Estimation of a Product Family at the Early Stage of Product Development

    Get PDF
    A cost estimation method is required to estimate the life cycle cost of a product family at the early stage of product development in order to evaluate the product family design. There are difficulties with existing cost estimation techniques in estimating the life cycle cost for a product family at the early stage of product development. This paper proposes a framework that combines a knowledge based system and an activity based costing techniques in estimating the life cycle cost of a product family at the early stage of product development. The inputs of the framework are the product family structure and its sub function. The output of the framework is the life cycle cost of a product family that consists of all costs at each product family level and the costs of each product life cycle stage. The proposed framework provides a life cycle cost estimation tool for a product family at the early stage of product development using high level information as its input. The framework makes it possible to estimate the life cycle cost of various product family that use any types of product structure. It provides detailed information related to the activity and resource costs of both parts and products that can assist the designer in analyzing the cost of the product family design. In addition, it can reduce the required amount of information and time to construct the cost estimation system
    corecore