9,480 research outputs found

    SHREC'16: partial matching of deformable shapes

    Get PDF
    Matching deformable 3D shapes under partiality transformations is a challenging problem that has received limited focus in the computer vision and graphics communities. With this benchmark, we explore and thoroughly investigate the robustness of existing matching methods in this challenging task. Participants are asked to provide a point-to-point correspondence (either sparse or dense) between deformable shapes undergoing different kinds of partiality transformations, resulting in a total of 400 matching problems to be solved for each method - making this benchmark the biggest and most challenging of its kind. Five matching algorithms were evaluated in the contest; this paper presents the details of the dataset, the adopted evaluation measures, and shows thorough comparisons among all competing methods

    Time Discrete Geodesic Paths in the Space of Images

    Full text link
    In this paper the space of images is considered as a Riemannian manifold using the metamorphosis approach, where the underlying Riemannian metric simultaneously measures the cost of image transport and intensity variation. A robust and effective variational time discretization of geodesics paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals over a set of image intensity maps and pairwise matching deformations. For square-integrable input images the existence of discrete, connecting geodesic paths defined as minimizers of this variational problem is shown. Furthermore, Γ\Gamma-convergence of the underlying discrete path energy to the continuous path energy is proved. This includes a diffeomorphism property for the induced transport and the existence of a square-integrable weak material derivative in space and time. A spatial discretization via finite elements combined with an alternating descent scheme in the set of image intensity maps and the set of matching deformations is presented to approximate discrete geodesic paths numerically. Computational results underline the efficiency of the proposed approach and demonstrate important qualitative properties.Comment: 27 pages, 7 figure

    Multiple Shape Registration using Constrained Optimal Control

    Get PDF
    Lagrangian particle formulations of the large deformation diffeomorphic metric mapping algorithm (LDDMM) only allow for the study of a single shape. In this paper, we introduce and discuss both a theoretical and practical setting for the simultaneous study of multiple shapes that are either stitched to one another or slide along a submanifold. The method is described within the optimal control formalism, and optimality conditions are given, together with the equations that are needed to implement augmented Lagrangian methods. Experimental results are provided for stitched and sliding surfaces

    Deformable Prototypes for Encoding Shape Categories in Image Databases

    Full text link
    We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.Office of Naval Research (Young Investigator Award N00014-06-1-0661

    Soliton Dynamics in Computational Anatomy

    Full text link
    Computational anatomy (CA) has introduced the idea of anatomical structures being transformed by geodesic deformations on groups of diffeomorphisms. Among these geometric structures, landmarks and image outlines in CA are shown to be singular solutions of a partial differential equation that is called the geodesic EPDiff equation. A recently discovered momentum map for singular solutions of EPDiff yields their canonical Hamiltonian formulation, which in turn provides a complete parameterization of the landmarks by their canonical positions and momenta. The momentum map provides an isomorphism between landmarks (and outlines) for images and singular soliton solutions of the EPDiff equation. This isomorphism suggests a new dynamical paradigm for CA, as well as new data representation.Comment: published in NeuroImag
    • …
    corecore