1,971 research outputs found

    Optimal lower bounds for quantum automata and random access codes

    Get PDF
    Consider the finite regular language L_n = {w0 : w \in {0,1}^*, |w| \le n}. It was shown by Ambainis, Nayak, Ta-Shma and Vazirani that while this language is accepted by a deterministic finite automaton of size O(n), any one-way quantum finite automaton (QFA) for it has size 2^{Omega(n/log n)}. This was based on the fact that the evolution of a QFA is required to be reversible. When arbitrary intermediate measurements are allowed, this intuition breaks down. Nonetheless, we show a 2^{Omega(n)} lower bound for such QFA for L_n, thus also improving the previous bound. The improved bound is obtained by simple entropy arguments based on Holevo's theorem. This method also allows us to obtain an asymptotically optimal (1-H(p))n bound for the dense quantum codes (random access codes) introduced by Ambainis et al. We then turn to Holevo's theorem, and show that in typical situations, it may be replaced by a tighter and more transparent in-probability bound.Comment: 8 pages, 1 figure, Latex2e. Extensive modifications have been made to increase clarity. To appear in FOCS'9

    Quantum Random Access Codes with Shared Randomness

    Full text link
    We consider a communication method, where the sender encodes n classical bits into 1 qubit and sends it to the receiver who performs a certain measurement depending on which of the initial bits must be recovered. This procedure is called (n,1,p) quantum random access code (QRAC) where p > 1/2 is its success probability. It is known that (2,1,0.85) and (3,1,0.79) QRACs (with no classical counterparts) exist and that (4,1,p) QRAC with p > 1/2 is not possible. We extend this model with shared randomness (SR) that is accessible to both parties. Then (n,1,p) QRAC with SR and p > 1/2 exists for any n > 0. We give an upper bound on its success probability (the known (2,1,0.85) and (3,1,0.79) QRACs match this upper bound). We discuss some particular constructions for several small values of n. We also study the classical counterpart of this model where n bits are encoded into 1 bit instead of 1 qubit and SR is used. We give an optimal construction for such codes and find their success probability exactly--it is less than in the quantum case. Interactive 3D quantum random access codes are available on-line at http://home.lanet.lv/~sd20008/racs .Comment: 51 pages, 33 figures. New sections added: 1.2, 3.5, 3.8.2, 5.4 (paper appears to be shorter because of smaller margins). Submitted as M.Math thesis at University of Waterloo by M

    Improved Lower Bounds for Locally Decodable Codes and Private Information Retrieval

    Full text link
    We prove new lower bounds for locally decodable codes and private information retrieval. We show that a 2-query LDC encoding n-bit strings over an l-bit alphabet, where the decoder only uses b bits of each queried position of the codeword, needs code length m = exp(Omega(n/(2^b Sum_{i=0}^b {l choose i}))) Similarly, a 2-server PIR scheme with an n-bit database and t-bit queries, where the user only needs b bits from each of the two l-bit answers, unknown to the servers, satisfies t = Omega(n/(2^b Sum_{i=0}^b {l choose i})). This implies that several known PIR schemes are close to optimal. Our results generalize those of Goldreich et al. who proved roughly the same bounds for linear LDCs and PIRs. Like earlier work by Kerenidis and de Wolf, our classical lower bounds are proved using quantum computational techniques. In particular, we give a tight analysis of how well a 2-input function can be computed from a quantum superposition of both inputs.Comment: 12 pages LaTeX, To appear in ICALP '0

    A Hypercontractive Inequality for Matrix-Valued Functions with Applications to Quantum Computing and LDCs

    Full text link
    The Bonami-Beckner hypercontractive inequality is a powerful tool in Fourier analysis of real-valued functions on the Boolean cube. In this paper we present a version of this inequality for matrix-valued functions on the Boolean cube. Its proof is based on a powerful inequality by Ball, Carlen, and Lieb. We also present a number of applications. First, we analyze maps that encode nn classical bits into mm qubits, in such a way that each set of kk bits can be recovered with some probability by an appropriate measurement on the quantum encoding; we show that if m<0.7nm<0.7 n, then the success probability is exponentially small in kk. This result may be viewed as a direct product version of Nayak's quantum random access code bound. It in turn implies strong direct product theorems for the one-way quantum communication complexity of Disjointness and other problems. Second, we prove that error-correcting codes that are locally decodable with 2 queries require length exponential in the length of the encoded string. This gives what is arguably the first ``non-quantum'' proof of a result originally derived by Kerenidis and de Wolf using quantum information theory, and answers a question by Trevisan.Comment: This is the full version of a paper that will appear in the proceedings of the IEEE FOCS 08 conferenc
    corecore