2,752 research outputs found

    Optimal Lower Bounds for Projective List Update Algorithms

    Full text link
    The list update problem is a classical online problem, with an optimal competitive ratio that is still open, known to be somewhere between 1.5 and 1.6. An algorithm with competitive ratio 1.6, the smallest known to date, is COMB, a randomized combination of BIT and the TIMESTAMP algorithm TS. This and almost all other list update algorithms, like MTF, are projective in the sense that they can be defined by looking only at any pair of list items at a time. Projectivity (also known as "list factoring") simplifies both the description of the algorithm and its analysis, and so far seems to be the only way to define a good online algorithm for lists of arbitrary length. In this paper we characterize all projective list update algorithms and show that their competitive ratio is never smaller than 1.6 in the partial cost model. Therefore, COMB is a best possible projective algorithm in this model.Comment: Version 3 same as version 2, but date in LaTeX \today macro replaced by March 8, 201

    New Bounds for Randomized List Update in the Paid Exchange Model

    Get PDF
    We study the fundamental list update problem in the paid exchange model P^d. This cost model was introduced by Manasse, McGeoch and Sleator [M.S. Manasse et al., 1988] and Reingold, Westbrook and Sleator [N. Reingold et al., 1994]. Here the given list of items may only be rearranged using paid exchanges; each swap of two adjacent items in the list incurs a cost of d. Free exchanges of items are not allowed. The model is motivated by the fact that, when executing search operations on a data structure, key comparisons are less expensive than item swaps. We develop a new randomized online algorithm that achieves an improved competitive ratio against oblivious adversaries. For large d, the competitiveness tends to 2.2442. Technically, the analysis of the algorithm relies on a new approach of partitioning request sequences and charging expected cost. Furthermore, we devise lower bounds on the competitiveness of randomized algorithms against oblivious adversaries. No such lower bounds were known before. Specifically, we prove that no randomized online algorithm can achieve a competitive ratio smaller than 2 in the partial cost model, where an access to the i-th item in the current list incurs a cost of i-1 rather than i. All algorithms proposed in the literature attain their competitiveness in the partial cost model. Furthermore, we show that no randomized online algorithm can achieve a competitive ratio smaller than 1.8654 in the standard full cost model. Again the lower bounds hold for large d

    On the List Update Problem with Advice

    Get PDF
    We study the online list update problem under the advice model of computation. Under this model, an online algorithm receives partial information about the unknown parts of the input in the form of some bits of advice generated by a benevolent offline oracle. We show that advice of linear size is required and sufficient for a deterministic algorithm to achieve an optimal solution or even a competitive ratio better than 15/1415/14. On the other hand, we show that surprisingly two bits of advice are sufficient to break the lower bound of 22 on the competitive ratio of deterministic online algorithms and achieve a deterministic algorithm with a competitive ratio of 5/35/3. In this upper-bound argument, the bits of advice determine the algorithm with smaller cost among three classical online algorithms, TIMESTAMP and two members of the MTF2 family of algorithms. We also show that MTF2 algorithms are 2.52.5-competitive

    Adapting the interior point method for the solution of LPs on serial, coarse grain parallel and massively parallel computers

    Get PDF
    In this paper we describe a unified scheme for implementing an interior point algorithm (IPM) over a range of computer architectures. In the inner iteration of the IPM a search direction is computed using Newton's method. Computationally this involves solving a sparse symmetric positive definite (SSPD) system of equations. The choice of direct and indirect methods for the solution of this system, and the design of data structures to take advantage of serial, coarse grain parallel and massively parallel computer architectures, are considered in detail. We put forward arguments as to why integration of the system within a sparse simplex solver is important and outline how the system is designed to achieve this integration
    • …
    corecore