48 research outputs found

    High-Rate Space-Time Coded Large MIMO Systems: Low-Complexity Detection and Channel Estimation

    Full text link
    In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-MIMO systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16x16 and 32x32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.Comment: v3: Performance/complexity comparison of the proposed scheme with other large-MIMO architectures/detectors has been added (Sec. IV-D). The paper has been accepted for publication in IEEE Journal of Selected Topics in Signal Processing (JSTSP): Spl. Iss. on Managing Complexity in Multiuser MIMO Systems. v2: Section V on Channel Estimation is update

    Turbo receivers for interleave-division multiple-access systems

    Get PDF
    In this paper several turbo receivers for Interleave-Division Multiple-Access (IDMA) systems will be discussed. The multiple access system model is presented first. The optimal, Maximum A Posteriori (MAP) algorithm, is then presented. It will be shown that the use of a precoding technique at the emitter side is applicable to IDMA systems. Several low complexity Multi-User Detector (MUD), based on the Gaussian approximation, will be next discussed. It will be shown that the MUD with Probabilistic Data Association (PDA) algorithm provides faster convergence of the turbo receiver. The discussed turbo receivers will be evaluated by means of Bit Error Rate (BER) simulations and EXtrinsic Information Transfer (EXIT) charts

    Design and Analysis of GFDM-Based Wireless Communication Systems

    Get PDF
    Le multiplexage généralisé par répartition en fréquence (GFDM), une méthode de traitement par blocs de modulation multiporteuses non orthogonales, est une candidate prometteuse pour les technologies de forme d'onde pour les systèmes sans fil au-delà de la cinquième génération (5G). La capacité du GFDM à ajuster de manière flexible la taille du bloc et le type de filtres de mise en forme des impulsions en fait une méthode appropriée pour répondre à plusieurs exigences importantes, comme une faible latence, un faible rayonnement hors bande (OOB) et des débits de données élevés. En appliquant aux systèmes GFDM la technique des systèmes à entrées multiples et sorties multiples (MIMO), la technique de MIMO massif ou des codes de contrôle de parité à faible densité (LDPC), il est possible d'améliorer leurs performances. Par conséquent, l'étude de ces systèmes combinés sont d'une grande importance théorique et pratique. Dans cette thèse, nous étudions les systèmes de communication sans fil basés sur le GFDM en considérant trois aspects. Tout d'abord, nous dérivons une borne d'union sur le taux d'erreur sur les bits (BER) pour les systèmes MIMO-GFDM, technique qui est basée sur des probabilités d'erreur par paires exactes (PEP). La PEP exacte est calculée en utilisant la fonction génératrice de moments(MGF) pour les détecteurs à maximum de vraisemblance (ML). La corrélation spatiale entre les antennes et les erreurs d'estimation de canal sont prises en compte dans l'environnement de canal étudié. Deuxièmement, les estimateurs et les précodeurs de canal de faible complexité basés sur une expansion polynomiale sont proposés pour les systèmes MIMO-GFDM massifs. Des pilotes sans interférence sont utilisés pour l'estimation du canal basée sur l'erreur quadratique moyenne minimale(MMSE) pour lutter contre l'influence de la non-orthogonalité entre les sous-porteuses dans le GFDM. La complexité de calcul cubique peut être réduite à une complexité d'ordre au carré en utilisant la technique d'expansion polynomiale pour approximer les inverses de matrices dans l'estimation MMSE conventionnelle et le précodage. De plus, nous calculons les limites de performance en termes d'erreur quadratique moyenne (MSE) pour les estimateurs proposés, ce qui peut être un outil utile pour prédire la performance des estimateurs dans la région de Eₛ/N₀ élevé. Une borne inférieure de Cramér-Rao(CRLB) est dérivée pour notre modèle de système et agit comme une référence pour les estimateurs. La complexité de calcul des estimateurs de canal proposés et des précodeurs et les impacts du degré du polynôme sont également étudiés. Enfin, nous analysons les performances de la probabilité d'erreur des systèmes GFDM combinés aux codes LDPC. Nous dérivons d'abord les expressions du ratio de vraisemblance logarithmique (LLR) initiale qui sont utilisées dans le décodeur de l'algorithme de somme de produits (SPA). Ensuite, basé sur le seuil de décodage, nous estimons le taux d'erreur de trame (FER) dans la région de bas E[indice b]/N₀ en utilisant le BER observé pour modéliser les variations du canal. De plus, une borne inférieure du FER du système est également proposée basée sur des ensembles absorbants. Cette borne inférieure peut agir comme une estimation du FER dans la région de E[indice b]/N₀ élevé si l'ensemble absorbant utilisé est dominant et que sa multiplicité est connue. La quantification a également un impact important sur les performances du FER et du BER. Des codes LDPC basés sur un tableau et construit aléatoirement sont utilisés pour supporter les analyses de performances. Pour ces trois aspects, des simulations et des calculs informatiques sont effectués pour obtenir des résultats numériques connexes, qui vérifient les méthodes proposées.8 372162\u a Generalized frequency division multiplexing (GFDM) is a block-processing based non-orthogonal multi-carrier modulation scheme, which is a promising candidate waveform technology for beyond fifth-generation (5G) wireless systems. The ability of GFDM to flexibly adjust the block size and the type of pulse-shaping filters makes it a suitable scheme to meet several important requirements, such as low latency, low out-of-band (OOB) radiation and high data rates. Applying the multiple-input multiple-output (MIMO) technique, the massive MIMO technique, or low-density parity-check (LDPC) codes to GFDM systems can further improve the systems performance. Therefore, the investigation of such combined systems is of great theoretical and practical importance. This thesis investigates GFDM-based wireless communication systems from the following three aspects. First, we derive a union bound on the bit error rate (BER) for MIMO-GFDM systems, which is based on exact pairwise error probabilities (PEPs). The exact PEP is calculated using the moment-generating function (MGF) for maximum likelihood (ML) detectors. Both the spatial correlation between antennas and the channel estimation errors are considered in the investigated channel environment. Second, polynomial expansion-based low-complexity channel estimators and precoders are proposed for massive MIMO-GFDM systems. Interference-free pilots are used in the minimum mean square error (MMSE) channel estimation to combat the influence of non-orthogonality between subcarriers in GFDM. The cubic computational complexity can be reduced to square order by using the polynomial expansion technique to approximate the matrix inverses in the conventional MMSE estimation and precoding. In addition, we derive performance limits in terms of the mean square error (MSE) for the proposed estimators, which can be a useful tool to predict estimators performance in the high Eₛ/N₀ region. A Cramér-Rao lower bound (CRLB) is derived for our system model and acts as a benchmark for the estimators. The computational complexity of the proposed channel estimators and precoders, and the impacts of the polynomial degree are also investigated. Finally, we analyze the error probability performance of LDPC coded GFDM systems. We first derive the initial log-likelihood ratio (LLR) expressions that are used in the sum-product algorithm (SPA) decoder. Then, based on the decoding threshold, we estimate the frame error rate (FER) in the low E[subscript b]/N₀ region by using the observed BER to model the channel variations. In addition, a lower bound on the FER of the system is also proposed based on absorbing sets. This lower bound can act as an estimate of the FER in the high E[subscript b]/N₀ region if the absorbing set used is dominant and its multiplicity is known. The quantization scheme also has an important impact on the FER and BER performances. Randomly constructed and array-based LDPC codes are used to support the performance analyses. For all these three aspects, software-based simulations and calculations are carried out to obtain related numerical results, which verify our proposed methods

    Differential Coding for MIMO and Cooperative Communications

    Get PDF
    Multiple-input multiple-output (MIMO) wireless communication systems have been studied a lot in the last ten years. They have many promising features like array gain, diversity gain, spatial multiplexing gain, interference reduction, and improved capacity as compared to a single-input single-output (SISO) systems. However, the increasing demand of high data-rate in current wireless communications systems motivated us to investigate new rate-efficient channel coding techniques. In this dissertation, we study differential modulation for MIMO systems. Differential modulation is useful since it avoids the need of channel estimation by the receiver and saves valuable bandwidth with a slight symbol error-rate (SER) performance loss. The effect of channel correlation over differential MIMO system has not been studied in detail so far. It has been shown in the literature that a linear memoryless precoder can be used to improve the performance of coherent MIMO system over correlated channels. In this work, we implement precoded differential modulation for non-orthogonal and orthogonal space-time blocks codes (STBCs) over arbitrarily correlated channels. We design precoders based on pair-wise error probability (PEP) and approximate SER for differential MIMO system. The carrier offsets, which result because of the movement of the receiver or transmitter and/or scatterers, and mismatch between the transmit and receive oscillators, are a big challenge for the differential MIMO system. The carrier offsets make the flat fading channel behave as a time-varying channel. Hence, the channel does not remain constant over two consecutive STBC block transmission time-intervals, which is a basic assumption for differential systems and the differential systems break down. Double-differential coding is a key technique which could be used to avoid the need of both carrier offset and channel estimation. In this work, we propose a double-differential coding for full-rank and square orthogonal space-time block codes (OSTBC) with M-PSK constellation. A suboptimal decoder for the double-differentially encoded OSTBC is obtained. We also derive a simple PEP upper bound for the double-differential OSTBC. A precoder is also designed based on the PEP upper bound for the double-differential OSTBC to make it more robust against arbitrary MIMO channel correlations. Cooperative communication has several promising features to become a main technology in future wireless communications systems. It has been shown in the literature that the cooperative communication can avoid the difficulties of implementing actual antenna array and convert the SISO system into a virtual MIMO system. In this way, cooperation between the users allows them to exploit the diversity gain and other advantages of MIMO system at a SISO wireless network. A cooperative communication system is difficult to implement in practice because it generally requires that all cooperating nodes must have the perfect knowledge of the channel gains of all the links in the network. This is infeasible in a large wireless network like cellular system. If the users are moving and there is mismatch between the transmit and receive oscillators, the resulting carrier offset may further degrade the performance of a cooperative system. In practice, it is very difficult to estimate the carrier offset perfectly over SISO links. A very small residual offset error in the data may degrade the system performance substantially. Hence, to exploit the diversity in a cooperative system in the presence of carrier offsets is a big challenge. In this dissertation, we propose double-differential modulation for cooperative communication systems to avoid the need of the knowledge of carrier offset and channel gain at the cooperating nodes (relays) and the destination. We derive few useful SER/bit error rate (BER) expressions for double-differential cooperative communication systems using decode-and-forward and amplify-and-forward protocols. Based on these SER/BER expressions, power allocations are also proposed to further improve the performance of these systems. List of papers included in the dissertation This dissertation is based on the following five papers, referred to in the text by letters (A-E)
    corecore