19,519 research outputs found

    Optimal level sets for bivariate density representation

    Get PDF
    In bivariate density representation there is an extensive literature on level set estimation when the level is fixed, but this is not so much the case when choosing which level is (or which levels are) of most interest. This is an important practical question which depends on the kind of problem one has to deal with as well as the kind of feature one wishes to highlight in the density, the answer to which requires both the definition of what the optimal level is and the construction of a method for finding it. We consider two scenarios for this problem. The first one corresponds to situations in which one has just a single density function to be represented. However, as a result of the technical progress in data collecting, problems are emerging in which one has to deal with a sample of densities. In these situations, the need arises to develop joint representation for all these densities, and this is the second scenario considered in this paper. For each case, we provide consistency results for the estimated levels and present wide Monte Carlo simulated experiments illustrating the interest and feasibility of the proposed method. (C) 2015 Elsevier Inc. All rights reserved.Peer ReviewedPostprint (author's final draft

    Extracting the Italian output gap: a Bayesian approach

    Full text link
    During the last decades particular effort has been directed towards understanding and predicting the relevant state of the business cycle with the objective of decomposing permanent shocks from those having only a transitory impact on real output. This trend--cycle decomposition has a relevant impact on several economic and fiscal variables and constitutes by itself an important indicator for policy purposes. This paper deals with trend--cycle decomposition for the Italian economy having some interesting peculiarities which makes it attractive to analyse from both a statistic and an historical perspective. We propose an univariate model for the quarterly real GDP, subsequently extended to include the price dynamics through a Phillips curve. This study considers a series of the Italian quarterly real GDP recently released by OECD which includes both the 1960s and the recent global financial crisis of 2007--2008. Parameters estimate as well as the signal extraction are performed within the Bayesian paradigm which effectively handles complex models where the parameters enter the log--likelihood function in a strongly nonlinear way. A new Adaptive Independent Metropolis--within--Gibbs sampler is then developed to efficiently simulate the parameters of the unobserved cycle. Our results suggest that inflation influences the Output Gap estimate, making the extracted Italian OG an important indicator of inflation pressures on the real side of the economy, as stated by the Phillips theory. Moreover, our estimate of the sequence of peaks and troughs of the Output Gap is in line with the OECD official dating of the Italian business cycle

    Wind turbine condition assessment through power curve copula modeling

    Get PDF
    Power curves constructed from wind speed and active power output measurements provide an established method of analyzing wind turbine performance. In this paper it is proposed that operational data from wind turbines are used to estimate bivariate probability distribution functions representing the power curve of existing turbines so that deviations from expected behavior can be detected. Owing to the complex form of dependency between active power and wind speed, which no classical parameterized distribution can approximate, the application of empirical copulas is proposed; the statistical theory of copulas allows the distribution form of marginal distributions of wind speed and power to be expressed separately from information about the dependency between them. Copula analysis is discussed in terms of its likely usefulness in wind turbine condition monitoring, particularly in early recognition of incipient faults such as blade degradation, yaw and pitch errors

    Mixtures of Spatial Spline Regressions

    Full text link
    We present an extension of the functional data analysis framework for univariate functions to the analysis of surfaces: functions of two variables. The spatial spline regression (SSR) approach developed can be used to model surfaces that are sampled over a rectangular domain. Furthermore, combining SSR with linear mixed effects models (LMM) allows for the analysis of populations of surfaces, and combining the joint SSR-LMM method with finite mixture models allows for the analysis of populations of surfaces with sub-family structures. Through the mixtures of spatial splines regressions (MSSR) approach developed, we present methodologies for clustering surfaces into sub-families, and for performing surface-based discriminant analysis. The effectiveness of our methodologies, as well as the modeling capabilities of the SSR model are assessed through an application to handwritten character recognition
    • …
    corecore