38,304 research outputs found

    Cover Tree Bayesian Reinforcement Learning

    Get PDF
    This paper proposes an online tree-based Bayesian approach for reinforcement learning. For inference, we employ a generalised context tree model. This defines a distribution on multivariate Gaussian piecewise-linear models, which can be updated in closed form. The tree structure itself is constructed using the cover tree method, which remains efficient in high dimensional spaces. We combine the model with Thompson sampling and approximate dynamic programming to obtain effective exploration policies in unknown environments. The flexibility and computational simplicity of the model render it suitable for many reinforcement learning problems in continuous state spaces. We demonstrate this in an experimental comparison with least squares policy iteration

    Optimal Reinforcement Learning for Gaussian Systems

    Full text link
    The exploration-exploitation trade-off is among the central challenges of reinforcement learning. The optimal Bayesian solution is intractable in general. This paper studies to what extent analytic statements about optimal learning are possible if all beliefs are Gaussian processes. A first order approximation of learning of both loss and dynamics, for nonlinear, time-varying systems in continuous time and space, subject to a relatively weak restriction on the dynamics, is described by an infinite-dimensional partial differential equation. An approximate finite-dimensional projection gives an impression for how this result may be helpful.Comment: final pre-conference version of this NIPS 2011 paper. Once again, please note some nontrivial changes to exposition and interpretation of the results, in particular in Equation (9) and Eqs. 11-14. The algorithm and results have remained the same, but their theoretical interpretation has change

    Outlier detection techniques for wireless sensor networks: A survey

    Get PDF
    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree
    corecore