1,554 research outputs found

    Joint Centrality Distinguishes Optimal Leaders in Noisy Networks

    Full text link
    We study the performance of a network of agents tasked with tracking an external unknown signal in the presence of stochastic disturbances and under the condition that only a limited subset of agents, known as leaders, can measure the signal directly. We investigate the optimal leader selection problem for a prescribed maximum number of leaders, where the optimal leader set minimizes total system error defined as steady-state variance about the external signal. In contrast to previously established greedy algorithms for optimal leader selection, our results rely on an expression of total system error in terms of properties of the underlying network graph. We demonstrate that the performance of any given set of leaders depends on their influence as determined by a new graph measure of centrality of a set. We define the joint  centralityjoint \; centrality of a set of nodes in a network graph such that a leader set with maximal joint centrality is an optimal leader set. In the case of a single leader, we prove that the optimal leader is the node with maximal information centrality. In the case of multiple leaders, we show that the nodes in the optimal leader set balance high information centrality with a coverage of the graph. For special cases of graphs, we solve explicitly for optimal leader sets. We illustrate with examples.Comment: Conditionally accepted to IEEE TCN

    On Submodularity and Controllability in Complex Dynamical Networks

    Full text link
    Controllability and observability have long been recognized as fundamental structural properties of dynamical systems, but have recently seen renewed interest in the context of large, complex networks of dynamical systems. A basic problem is sensor and actuator placement: choose a subset from a finite set of possible placements to optimize some real-valued controllability and observability metrics of the network. Surprisingly little is known about the structure of such combinatorial optimization problems. In this paper, we show that several important classes of metrics based on the controllability and observability Gramians have a strong structural property that allows for either efficient global optimization or an approximation guarantee by using a simple greedy heuristic for their maximization. In particular, the mapping from possible placements to several scalar functions of the associated Gramian is either a modular or submodular set function. The results are illustrated on randomly generated systems and on a problem of power electronic actuator placement in a model of the European power grid.Comment: Original arXiv version of IEEE Transactions on Control of Network Systems paper (Volume 3, Issue 1), with a addendum (located in the ancillary documents) that explains an error in a proof of the original paper and provides a counterexample to the corresponding resul
    • …
    corecore