26,100 research outputs found

    Decision making with decision event graphs

    Get PDF
    We introduce a new modelling representation, the Decision Event Graph (DEG), for asymmetric multistage decision problems. The DEG explicitly encodes conditional independences and has additional significant advantages over other representations of asymmetric decision problems. The colouring of edges makes it possible to identify conditional independences on decision trees, and these coloured trees serve as a basis for the construction of the DEG. We provide an efficient backward-induction algorithm for finding optimal decision rules on DEGs, and work through an example showing the efficacy of these graphs. Simplifications of the topology of a DEG admit analogues to the sufficiency principle and barren node deletion steps used with influence diagrams

    Quadratic Form Expansions for Unitaries

    Get PDF
    We introduce techniques to analyze unitary operations in terms of quadratic form expansions, a form similar to a sum over paths in the computational basis when the phase contributed by each path is described by a quadratic form over R\mathbb R. We show how to relate such a form to an entangled resource akin to that of the one-way measurement model of quantum computing. Using this, we describe various conditions under which it is possible to efficiently implement a unitary operation U, either when provided a quadratic form expansion for U as input, or by finding a quadratic form expansion for U from other input data.Comment: 20 pages, 3 figures; (extended version of) accepted submission to TQC 200

    The Radio Number of Grid Graphs

    Full text link
    The radio number problem uses a graph-theoretical model to simulate optimal frequency assignments on wireless networks. A radio labeling of a connected graph GG is a function f:V(G)Z0+f:V(G) \to \mathbb Z_{0}^+ such that for every pair of vertices u,vV(G)u,v \in V(G), we have f(u)f(v)diam(G)+1d(u,v)\lvert f(u)-f(v)\rvert \ge \text{diam}(G) + 1 - d(u,v) where diam(G)\text{diam}(G) denotes the diameter of GG and d(u,v)d(u,v) the distance between vertices uu and vv. Let span(f)\text{span}(f) be the difference between the greatest label and least label assigned to V(G)V(G). Then, the \textit{radio number} of a graph rn(G)\text{rn}(G) is defined as the minimum value of span(f)\text{span}(f) over all radio labelings of GG. So far, there have been few results on the radio number of the grid graph: In 2009 Calles and Gomez gave an upper and lower bound for square grids, and in 2008 Flores and Lewis were unable to completely determine the radio number of the ladder graph (a 2 by nn grid). In this paper, we completely determine the radio number of the grid graph Ga,bG_{a,b} for a,b>2a,b>2, characterizing three subcases of the problem and providing a closed-form solution to each. These results have implications in the optimization of radio frequency assignment in wireless networks such as cell towers and environmental sensors.Comment: 17 pages, 7 figure

    The Geometry of Interaction of Differential Interaction Nets

    Full text link
    The Geometry of Interaction purpose is to give a semantic of proofs or programs accounting for their dynamics. The initial presentation, translated as an algebraic weighting of paths in proofnets, led to a better characterization of the lambda-calculus optimal reduction. Recently Ehrhard and Regnier have introduced an extension of the Multiplicative Exponential fragment of Linear Logic (MELL) that is able to express non-deterministic behaviour of programs and a proofnet-like calculus: Differential Interaction Nets. This paper constructs a proper Geometry of Interaction (GoI) for this extension. We consider it both as an algebraic theory and as a concrete reversible computation. We draw links between this GoI and the one of MELL. As a by-product we give for the first time an equational theory suitable for the GoI of the Multiplicative Additive fragment of Linear Logic.Comment: 20 pagee, to be published in the proceedings of LICS0
    corecore